20.若關(guān)于x的不等式$\frac{bx}{ax+1}$+$\frac{dx+c}{cx+d}$<0的解集為(-2,-1)∪($\frac{1}{3}$,1),則關(guān)于x的不等式$\frac{x+a}$+$\frac{cx+d}{dx+c}$<0的解集為$(-1,-\frac{1}{2})∪(1,3)$.

分析 把要求解的不等式變形,分子分母同時(shí)除以x后把$\frac{1}{x}$看作一個(gè)整體,由已知不等式的解集得到$\frac{1}{x}$的范圍,進(jìn)一步求出x的取值范圍得答案.

解答 解:若x=0不符合題意,則x≠0,
由$\frac{x+a}+\frac{cx+d}{dx+c}<0$$\frac{bx}{ax+1}+\frac{dx+c}{cx+d}<0$得,$\frac{b•\frac{1}{x}}{1+a•\frac{1}{x}}+\frac{c+d•\frac{1}{x}}{d+c•\frac{1}{x}}<0$,
即$\frac{b•\frac{1}{x}}{a•\frac{1}{x}+1}+\frac{d•\frac{1}{x}+c}{c•\frac{1}{x}+d}<0$,
設(shè)t=$\frac{1}{x}$,則不等式變?yōu)?\frac{bt}{at+1}+\frac{dt+c}{ct+d}<0$,
因?yàn)椴坏仁?\frac{bx}{ax+1}$+$\frac{dx+c}{cx+d}$<0的解集為(-2,-1)∪($\frac{1}{3}$,1),
所以-2<$\frac{1}{x}$<-1或$\frac{1}{3}<$$\frac{1}{x}$<1,
解得-1<x<$-\frac{1}{2}$或1<x<3,
所以所求的不等式解集是$(-1,-\frac{1}{2})∪(1,3)$,
故答案為:$(-1,-\frac{1}{2})∪(1,3)$.

點(diǎn)評(píng) 本題考查不等式的解法,考查轉(zhuǎn)化思想、整體思想,以及換元法的應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.不等式(x-a)(ax-1)<0的解集是$(-∞,\frac{1}{a})∪(a,+∞)$,則實(shí)數(shù)a的取值范圍是[-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)將關(guān)于x的不等式|x-3|+|x-4|<2;
(2)如果關(guān)于x的不等式|x-3|+|x-4|<a的解集是空集,求實(shí)數(shù)a的取值范圍;
(3)對(duì)任意x∈R,|2-x|+|3+x|≥a2-4a恒成立,求a的取值范圍;
(4)已知m∈R,解關(guān)于x的不等式1-x≤|x-m|≤1+x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)l,m,n表示三條直線,α,β,γ表示三個(gè)平面,給出下列六個(gè)命題:
  ①若1⊥α,m⊥α,則l∥m;
  ②若l⊥α,m?β,l∥m,則α⊥β;
  ③若l⊥α,m?β,l⊥m,則α∥β;
  ④若m?β,n是l在β內(nèi)的射影,m⊥l,則m⊥n;
  ⑤若m?α,m∥n,則n∥α;
  ⑥若α⊥γ,β⊥γ,則α∥β.
  其中正確命題的個(gè)數(shù)是(  )
A.1B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖的平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)B在單位圓上,A(2,0),∠AOB=θ,△ABC為等邊三角形.
(1)若直線OB的斜率為$\frac{2}{3}$,求$\frac{si{n}^{2}θ-sin2θ}{co{s}^{2}θ+cos2θ}$的值;
(2)若θ∈(0,π),求四邊形OACB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.圓C:x2+y2-6x-8y+23=0的半徑為( 。
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線ax+4y-a=0與直線6x+8y+5=0平行,則這兩直線間的距離為1.1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題中,正確的是( 。
A.$\overrightarrow{a}$與$\overrightarrow$共線,$\overrightarrow$與$\overrightarrow{c}$共線,則$\overrightarrow{a}$與$\overrightarrow{c}$也共線
B.任意兩個(gè)相等的非零向量的始點(diǎn)與終點(diǎn)總是一平行四邊形的四個(gè)頂點(diǎn)
C.向量$\overrightarrow{a}$與$\overrightarrow$不共線,則$\overrightarrow{a}$與$\overrightarrow$都是非零向量
D.有相同起點(diǎn)的兩個(gè)非零向量不平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.將雨數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)縮短到原來的$\frac{1}{3}$倍,再將曲線上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,然后把整個(gè)曲線向左平移$\frac{π}{3}$,得到函數(shù)y=sinx的圖象,求函數(shù)f(x)的解析式,并畫出函數(shù)y=f(x)在長度為一個(gè)周期的閉區(qū)間上的簡圖.

查看答案和解析>>

同步練習(xí)冊(cè)答案