12.直線ax+4y-a=0與直線6x+8y+5=0平行,則這兩直線間的距離為1.1.

分析 根據(jù)兩直線平行,先求出a的值,從而求出平行線間的距離即可.

解答 解:若直線ax+4y-a=0與直線6x+8y+5=0平行,
則$\frac{a}{4}$=$\frac{6}{8}$,解得:a=3,
兩條直線分別為:6x+8y-6=0和6x+8y+5=0,
則這兩直線間的距離為$\frac{|5-(-6)|}{\sqrt{{6}^{2}+{8}^{2}}}$=1.1,
故答案為:1.1.

點(diǎn)評 本題考查了平行線間的關(guān)系,考查平行線間的距離,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.方程${x^2}+{y^2}+ax-2ay+a+\frac{1}{4}=0$為圓的方程,則a的范圍為$(-∞,-\frac{1}{5})∪(1,+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某校高二年級的儀仗隊(duì)由6名男生和6名女生組成.
(1)某次活動需要從儀仗隊(duì)中選出4名男生和3名女生站成一排,且女生相鄰,那么排列方法有多少種?
(2)儀仗隊(duì)中有3個(gè)男生和2個(gè)女生參加一次訓(xùn)練,教官隨機(jī)地從中選出一人,若選出的是男生,則對他進(jìn)行10分鐘正步訓(xùn)練,若選出的是女生,則對她進(jìn)行5分鐘正步訓(xùn)練.完成訓(xùn)練的學(xué)生不再歸隊(duì),教官再隨機(jī)地選出另外一人,直到完成訓(xùn)練的男生多于女生為止,整個(gè)訓(xùn)練結(jié)束.設(shè)本次訓(xùn)練的總時(shí)間為ξ,求ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若關(guān)于x的不等式$\frac{bx}{ax+1}$+$\frac{dx+c}{cx+d}$<0的解集為(-2,-1)∪($\frac{1}{3}$,1),則關(guān)于x的不等式$\frac{x+a}$+$\frac{cx+d}{dx+c}$<0的解集為$(-1,-\frac{1}{2})∪(1,3)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.讀程序

對甲乙兩程序和輸出結(jié)果判斷正確的是(  )
A.程序不同,結(jié)果不同B.程序相同,結(jié)果不同
C.程序不同,結(jié)果相同D.程序相同,結(jié)果相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.等比數(shù)列{an}中,a4a10=16,則a7=±4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,a,b,c分別為角A,B,C的對邊,已知A=$\frac{π}{4}$,a=$\sqrt{3}$.
(1)若sinB=$\frac{3}{5}$,求邊c的長;
(2)若|$\overrightarrow{CA}$+$\overrightarrow{CB}$|=$\sqrt{6}$,求$\overrightarrow{CA}$•$\overrightarrow{CB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若集合A=(-∞,m],B={x|-2<x≤2},且B⊆A,則實(shí)數(shù)m的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知p:A⊆B;q:A=B,則p是q的必要不充分條件,q是p的充分不必要條件.

查看答案和解析>>

同步練習(xí)冊答案