4.函數(shù)f(x)在定義在(0,+∞)上的單調(diào)函數(shù),?x∈(0,+∞),f[f(x)-lnx]=e+1,則方程f(x)-f′(x)=e的解所在的區(qū)間是(1,2).

分析 由設t=f(x)-lnx,則f(x)=lnx+t,又由f(t)=e+1,求出f(x)=lnx+e,則方程f(x)-f′(x)=e的解可轉(zhuǎn)化成方程lnx-$\frac{1}{x}$=0的解,根據(jù)零點存在定理即可判斷.

解答 解:根據(jù)題意,對任意的x∈(0,+∞),都有f[f(x)-lnx]=e+1,
又由f(x)是定義在(0,+∞)上的單調(diào)函數(shù),
則f(x)-lnx為定值,
設t=f(x)-lnx,
則f(x)=lnx+t,
又由f(t)=e+1,
即lnt+t=e+1,
解得:t=e,
則f(x)=lnx+e,f′(x)=$\frac{1}{x}$,
∴f(x)-f′(x)=lnx+e-$\frac{1}{x}$=e,
即lnx-$\frac{1}{x}$=0,
則方程f(x)-f′(x)=e的解可轉(zhuǎn)化成方程lnx-$\frac{1}{x}$=0的解,
令h(x)=lnx-$\frac{1}{x}$,
而h(2)=ln2-$\frac{1}{2}$>0,h(1)=ln1-1<0,
∴方程lnx-$\frac{1}{x}$=0的解所在區(qū)間為(1,2),
∴方程f(x)-f′(x)=e的解所在區(qū)間為(1,2),
故答案為(1,2).

點評 本題考查了導數(shù)的運算和零點存在定理,關鍵是求出f(x),屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.已知不等式|x-a|>b的解集是{x|x>9或x<-3}.則實數(shù)a+b的值為9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知向量$\overrightarrow{a}$=(1,1),|$\overrightarrow{OM}$|=1,$\overrightarrow{ON}$•$\overrightarrow{a}$=2,其中O為坐標原點,那么$\overrightarrow{MN}$•$\overrightarrow{a}$的最小值為(  )
A.$\sqrt{2}$-1B.$\sqrt{2}$C.2-$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知sinα=1,求(1+cosα)(1-cosα)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)f(x)在x=1處可導,則當△x→0時,$\frac{f(1-2△x)-f(1)}{△x}$趨近于( 。
A.-2f′(1)B.$\frac{1}{2}$f′(1)C.-$\frac{1}{2}$f′(1)D.f($\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.過點A(0,m),B(-2,5)的直線斜率為2,則m的值為9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知圓的面積S是半徑r的函數(shù)S=πr2,用定義求S在r=5處的導數(shù),并對S′(5)的意義進行解釋.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆湖南衡陽八中高三上學期月考二數(shù)學(文)試卷(解析版) 題型:選擇題

函數(shù)有兩個不同的零點,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆湖南衡陽八中高三上學期月考二數(shù)學(理)試卷(解析版) 題型:選擇題

函數(shù)y=sin(2x+)的圖象可看成是把函數(shù)y=sin2x的圖象作以下平移得到 ( )

A.向右平移 B.向左平移

C.向右平移 D.向左平移

查看答案和解析>>

同步練習冊答案