20.如圖,直線AB∥CD∥EF,若AC=3,CE=4,則$\frac{BD}{BF}$的值是( 。
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{3}{7}$D.$\frac{4}{7}$

分析 直接利用平行線分線段成比例定理求解.

解答 解:∵直線AB∥CD∥EF,
∴$\frac{BD}{BF}$=$\frac{AC}{AE}$=$\frac{3}{3+4}$=$\frac{3}{7}$.
故選:C.

點評 本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應線段成比例.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.設命題p:$\frac{2x}{x-1}$<1,命題q:x2-(2a+1)x+a(a+1)<0,若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.給出下列命題:
①${log_{0.5}}3<{2^{\frac{1}{3}}}<{(\frac{1}{3})^{0.2}}$; 
②函數(shù)f(x)=lgx-sinx有3個零點;
③函數(shù)f(x)=ln$\frac{x+1}{x-1}$+$\frac{x}{12}$的圖象以原點為對稱中心;
④已知a、b、m、n、x、y均為正數(shù),且a≠b,若a、m、b、x成等差數(shù)列,a、n、b、y成等比數(shù)列,則有m>n,x<y.
其中正確命題的個數(shù)是( 。
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在平面直角坐標系中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=acosφ}\\{y=bsinφ}\end{array}\right.$(a>b>0,φ為參數(shù)),在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線C2是圓心在極軸上且經(jīng)過極點的圓,已知曲線C1上的點M($\sqrt{3}$,$\frac{1}{2}$)對應的參數(shù)φ=$\frac{π}{6}$,射線θ=$\frac{π}{3}$與曲線C2交于點D(1,$\frac{π}{3}$).
(1)求曲線C1,C2的直角坐標系方程;
(2)若點A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)都在曲線C1上,求$\frac{1}{{{ρ}_{1}}^{2}}$+$\frac{1}{{{ρ}_{2}}^{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設函數(shù)f(x)=ax2+(b-1)x+1(a>0)的兩個零點為x1,x2
(1)若x1<2<x2<4,求證:2a>b;
(2)若|x1|<2,|x1-x2|=2,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若函數(shù)f(x)=-2x3+ax2+1存在唯一的零點,則實數(shù)a的取值范圍為( 。
A.[0,+∞)B.[0,3]C.(-3,0]D.(-3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=sin2x+$\sqrt{3}$sinxcosx-$\frac{1}{2}$的圖象關于直線x=φ(φ|≤$\frac{π}{2}$)對稱,則φ的值為(  )
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.-$\frac{π}{6}$或$\frac{π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知集合A={x|x<3},B={x|-1<x≤0},則A∩(∁RB)等于( 。
A.{x|0≤x<3}B.{x|x≤-1或0<x<3}C.{x|-1<x<3}D.{x|x<-1或x>3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知y=f(x)為定義在R上的奇函數(shù).
(1)若y=f(x)在(0,+∞)上為減函數(shù),判斷(-∞,0)上的單調(diào)性并證明;
(2)若x>0時,f(x)=x2+sinx+1,求f(x)的解析式.

查看答案和解析>>

同步練習冊答案