分析 (1)先求出a=2,b=1,由此能求出曲線C1的直角坐標(biāo)方程;把點(diǎn)D的極坐標(biāo)化為直角坐標(biāo)代入圓C2的方程為(x-R)2+y2=R2,求得R=1,即可得到曲線C2的方程.
(2)把A、B兩點(diǎn)的極坐標(biāo),代入曲線C1極坐標(biāo)方程可得$\frac{{{ρ}_{1}}^{2}co{s}^{2}θ}{4}$+${{ρ}_{1}}^{2}si{n}^{2}θ=1$,$\frac{{{ρ}_{2}}^{2}si{n}^{2}θ}{4}$+${{ρ}_{2}}^{2}co{s}^{2}θ=1$,由此能求出$\frac{1}{{{ρ}_{1}}^{2}}$+$\frac{1}{{{ρ}_{2}}^{2}}$的值.
解答 解:(1)∵曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=acosφ}\\{y=bsinφ}\end{array}\right.$(a>b>0,φ為參數(shù)),曲線C1上的點(diǎn)M($\sqrt{3}$,$\frac{1}{2}$)對(duì)應(yīng)的參數(shù)φ=$\frac{π}{6}$,
∴$\left\{\begin{array}{l}{acos\frac{π}{6}=\sqrt{3}}\\{bsin\frac{π}{6}=\frac{1}{2}}\end{array}\right.$,解得a=2,b=1,
∴曲線C1的直角坐標(biāo)系方程為:$\frac{{x}^{2}}{4}+{y}^{2}$=1.
設(shè)圓C2的半徑R,則圓C2的方程為:ρ=2Rcosθ(或(x-R)2+y2=R2),
將點(diǎn)D(1,$\frac{π}{3}$)代入得:1=2Rcos$\frac{π}{3}$,∴R=1
∴圓C2的方程為:ρ=2cosθ(或(x-1)2+y2=1)…(5分)
(2)曲線C1的極坐標(biāo)方程為:$\frac{{ρ}^{2}co{s}^{2}θ}{4}$+ρ2sin2θ=1,
∵點(diǎn)A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)都在曲線C1上
將點(diǎn)A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)代入得:$\frac{{{ρ}_{1}}^{2}co{s}^{2}θ}{4}$+${{ρ}_{1}}^{2}si{n}^{2}θ=1$,$\frac{{{ρ}_{2}}^{2}si{n}^{2}θ}{4}$+${{ρ}_{2}}^{2}co{s}^{2}θ=1$,
∴$\frac{1}{{{ρ}_{1}}^{2}}$+$\frac{1}{{{ρ}_{2}}^{2}}$=($\frac{co{s}^{2}θ}{4}$+sin2θ)+($\frac{si{n}^{2}θ}{4}$)+cos2θ=$\frac{5}{4}$.…(10分)
點(diǎn)評(píng) 本題主要考查把參數(shù)方程化為普通方程的方法,把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | $\frac{3}{7}$ | D. | $\frac{4}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{1}{2}$,0) | B. | ($\frac{3}{4}$,1) | C. | (0,$\frac{1}{2}$) | D. | ($\frac{3}{4}$,0) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com