【題目】如圖,在四棱錐中,平面,四邊形是菱形,,,且交于點(diǎn),是上任意一點(diǎn).
(1)求證;
(2)已知二面角的余弦值為,若為的中點(diǎn),求與平面所成角的正弦值.
【答案】(1)見解析;(2)
【解析】
(1)利用線面垂直的性質(zhì)得,利用菱形的性質(zhì)得,利用線面垂直的判定定理得平面,利用線面垂直得到線線垂直,從而得到;
(2)分別以,,為軸,軸,軸的正方向建立空間直角坐標(biāo)系,設(shè),用坐標(biāo)表示點(diǎn),求得平面的法向量為,平面的法向量為,根據(jù)二面角的余弦值為,可求出,從而得到點(diǎn)的坐標(biāo),再利用向量的夾角公式,即可求得與平面所成角的正弦值.
(1)∵平面,∴
又∵四邊形為菱形,∴
又,∴平面
平面,∴
(2)連,在中,,∴平面
分別以,,為軸,軸,軸的正方向建立空間直角坐標(biāo)系.
設(shè),則,,
,,.
由(1)知,平面的一個(gè)法向量為
設(shè)平面 的一個(gè)法向量為,則由
即,令,則
因二面角的余弦值為,
∴,∴
設(shè)與平面所成角為,∵,,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x)=a(a為常數(shù)).
(1)求a的值;
(2)若函數(shù)g(x)=|(2x+1)f(x)|﹣k有2個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍;
(3)若x∈[﹣2,﹣1]時(shí),不等式f(x)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年10月1日,在慶祝新中國成立70周年閱兵中,由我國自主研制的軍用飛機(jī)和軍用無人機(jī)等參閱航空裝備分秒不差飛越天安門,壯軍威,振民心,令世人矚目.飛行員高超的飛行技術(shù)離不開艱苦的訓(xùn)練和科學(xué)的數(shù)據(jù)分析.一次飛行訓(xùn)練中,地面觀測站觀測到一架參閱直升飛機(jī)以千米/小時(shí)的速度在同一高度向正東飛行,如圖,第一次觀測到該飛機(jī)在北偏西的方向上,1分鐘后第二次觀測到該飛機(jī)在北偏東的方向上,仰角為,則直升機(jī)飛行的高度為________千米.(結(jié)果保留根號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的圖像在處的切線方程;
(2)求函數(shù)的極大值;
(3)若對恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將曲線上每個(gè)點(diǎn)的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),得到的圖象,則下列說法正確的是( )
A.的圖象關(guān)于直線對稱
B.在上的值域?yàn)?/span>
C.的圖象關(guān)于點(diǎn)對稱
D.的圖象可由的圖象向右平移個(gè)單位長度得到
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為,橢圓的離心率正好是雙曲線的離心率的倒數(shù),橢圓的短軸長等于拋物線上一點(diǎn)到拋物線焦點(diǎn)的距離.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓的兩個(gè)交點(diǎn)為,兩點(diǎn),已知圓:與軸的交點(diǎn)分別為,(點(diǎn)在軸的正半軸),且直線與圓相切,求的面積與的面積乘積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)內(nèi)角的對邊分別為,若,,,且,試求角和角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)·均輸》中有如下問題:“今有五人分十錢,令上二人所得與下三人等,問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分10錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列,問五人各得多少錢?”(“錢”是古代的一種重量單位).這個(gè)問題中,甲所得為( )
A.錢B.錢C.錢D.錢
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com