精英家教網 > 高中數學 > 題目詳情

【題目】據某市供電公司數據,20191月份市新能源汽車充電量約270萬度,同比2018年增長,為了增強新能源汽車的推廣運用,政府加大了充電樁等基礎設施的投入.現為了了解該城市充電樁等基礎設施的使用情況,隨機選取了200個駕駛新能源汽車的司機進行問卷調查,根據其滿意度評分值(百分制)按照,,…,分成5組,制成如圖所示的頻率分布直方圖.

1)求圖中的值并估計樣本數據的中位數;

2)已知滿意度評分值在內的男女司機人數比為,從中隨機抽取2人進行座談,求2人均為女司機的概率.

【答案】(1),中位數的估計值為75(2)

【解析】

1)根據頻率和為1計算,再判斷中位數落在第三組內,再計算中位數.

2)該組男司機3人,女司機2.記男司機為:,,女司機為:.排列出所有可能,計算滿足條件的個數,相除得到答案.

解:(1)根據頻率和為1.

.

第一組和第二組的頻率和為,則中位數落在第三組.

由于第三組的頻率為0.4,所以中位數的估計值為75.

2 設事件:隨機抽取2人進行座談,2人均為女司機.

的人數為.

∴該組男司機3人,女司機2.

記男司機為:,,女司機為:,.

5人抽取2人進行座談有:,,,,,,10個基本事件.

其中2人均為女司機的基本事件為.

.

∴隨機抽取2人進行座談,2人均為女司機的概率是.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4AB=2,∠BAD=60°,E,MN分別是BC,BB1,A1D的中點.

1)證明:MN∥平面C1DE;

2)求二面角A-MA1-N的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,證明: 為偶函數;

(2)若上單調遞增,求實數的取值范圍;

(3)若,求實數的取值范圍,使上恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】據相關規(guī)定,24小時內的降水量為日降水量(單位:mm),不同的日降水量對應的降水強度如表:

日降水量

(0,10)

[10,25)

[25,50)

[50,100)

[100,250)

[250,+∞)

降水強度

小雨

中雨

大雨

暴雨

大暴雨

特大暴雨

為分析某市“主汛期”的降水情況,從該市2015年6月~8月有降水記錄的監(jiān)測數據中,隨機抽取10天的數據作為樣本,具體數據如下:
16 12 23 65 24 37 39 21 36 68
(1)請完成以如表示這組數據的莖葉圖;

(2)從樣本中降水強度為大雨以上(含大雨)天氣的5天中隨機選取2天,求恰有1天是暴雨天氣的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數

(1)解不等式:;

(2)對任意,恒成立,求實數的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正三棱錐P﹣ABC中E,F分別是AC,PC的中點,若EF⊥BF,AB=2,則三棱錐P﹣ABC的外接球的表面積(
A.4π
B.6π
C.8π
D.12π

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了比較兩種治療失眠癥的藥(分別稱為藥, 藥)的療效,隨機地選取18位患者服用藥,18位患者服用藥,這36位患者服用一段時間后,記錄他們日平均增加的睡眠時間(單位:),試驗的觀測結果如下:

服用藥的18位患者日平均增加的睡眠時間:

0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3

服用藥的18位患者日平均增加的睡眠時間:

3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7

(1)分別計算兩組數據的平均數(小數點后保留兩位小數),從計算結果看哪種藥療效更好?

2)根據兩組數據完成下面莖葉圖,從莖葉圖看,哪種藥的療效更好?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線的參數方程為為參數),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,圓的極坐標方程為.

(1)求直線的普通方程和圓的直角坐標方程;

(2)若點是直線上的動點,過作直線與圓相切,切點分別為、,若使四邊形的面積最小,求此時點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設集合 ,則A∩(RB)等于(
A.(﹣∞,1)
B.(0,4)
C.(0,1)
D.(1,4)

查看答案和解析>>

同步練習冊答案