【題目】已知 ,其中向量 (x∈R),
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A、B、C的對邊分別為a、b、c,已知f (A)=2,a= ,b= ,求邊長c的值.
【答案】
(1)解:f (x)= = sin2x+cos2x
=2sin(2x+ )
由 ,
得 .
∴f(x)的單調(diào)增區(qū)間為
(2)解:f (A)=2sin(2A+ )=2,
∴sin(2A+ )=1,
∵0<A<π,
∴ ,
∴2A+ = ,
∴A= .
由余弦定理得 a2=b2+c2﹣2bccosA,
7=3+c2﹣3c 即 c2﹣3c﹣4=0,
∴c=4或c=﹣1 (不合題意,舍去),
∴c=4
【解析】(1)利用平面向量數(shù)量積的運(yùn)算,兩角和的正弦函數(shù)公式可求函數(shù)解析式為f (x)=2sin(2x+ ),利用正弦函數(shù)的單調(diào)性即可得解.(2)由已知可得sin(2A+ )=1,結(jié)合范圍0<A<π,可求A的值,由余弦定理即可解得c的值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解余弦定理的定義的相關(guān)知識,掌握余弦定理:;;.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C,D都在同一個(gè)與水平面垂直的平面內(nèi),B,D為兩島上的兩座燈塔的塔頂。測量船于水面A處測得B點(diǎn)和D點(diǎn)的仰角分別為,,于水面C處測得B點(diǎn)和D點(diǎn)的仰角均為,AC=0.1km。
(Ⅰ)試探究圖中B,D間的距離與另外哪兩點(diǎn)間距離會相等?
(II)求B,D間的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:ax+by+1=0(a,b不同時(shí)為0),l2:(a-2)x+y+a=0,
(1)若b=0,且l1⊥l2,求實(shí)數(shù)a的值;
(2)當(dāng)b=3,且l1∥l2時(shí),求直線l1與l2之間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機(jī)廠商推出一款6寸大屏手機(jī),現(xiàn)對500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對手機(jī)進(jìn)行打分,打分的頻數(shù)分布表如下:
女性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 20 | 40 | 80 | 50 | 10 | |
男性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
(Ⅰ)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評分的波動大。ú挥(jì)算具體值,給出結(jié)論即可);
(Ⅱ)根據(jù)評分的不同,運(yùn)用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意抽取3名用戶,求3名用戶中評分小于90分的人數(shù)的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人玩卡片游戲:他們手里都拿著分別標(biāo)有數(shù)字1,2,3,4,5,6的6張卡片,各自從自己的卡片中隨機(jī)抽出1張,規(guī)定兩人誰抽出的卡片上的數(shù)字大,誰就獲勝,數(shù)字相同則為平局.
(1)求甲獲勝的概率.
(2)現(xiàn)已知他們都抽出了標(biāo)有數(shù)字6的卡片,為了分出勝負(fù),他們決定從手里剩下的卡片中再各自隨機(jī)抽出1張,若他們這次抽出的卡片上數(shù)字之和為偶數(shù),則甲獲勝,否則乙獲勝.請問:這個(gè)規(guī)則公平嗎,為什么 ?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①殘差可用來判斷模型擬合的效果;
②設(shè)有一個(gè)回歸方程,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;
③線性回歸方程必過 ;
④在一個(gè)2×2列聯(lián)表中,由計(jì)算得=13.079,則有99%的把握確認(rèn)這兩個(gè)變量間有關(guān)系(其中);
其中錯誤的個(gè)數(shù)是( )
A. 0 B. 1 C. 2 D. 3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,已知(),且.
(1)證明為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)設(shè),且證明;
(3)在(2)小問的條件下,若對任意的,不等式恒成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=x2+ex﹣ (x<0)與g(x)=x2+ln(x+a)圖象上存在關(guān)于y軸對稱的點(diǎn),則a的取值范圍是( )
A.(﹣ )
B.( )
C.( )
D.( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(xR),g(x)=2a-1
(1)求函數(shù)f(x)的單調(diào)區(qū)間與極值.
(2)若f(x)≥g(x)對恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com