已知函數(shù)f(x)=
2
x
,x≥2
(x-1)2,x<2
,若關(guān)于x的方程f(x)=k有兩個(gè)不同的實(shí)根,則數(shù)k的取值范圍是
 
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得,函數(shù)y=f(x)的圖象和直線y=k有兩個(gè)不同的交點(diǎn),數(shù)形結(jié)合可得k的取值范圍.
解答: 解:由題意可得,函數(shù)y=f(x)的圖象和直線y=k有兩個(gè)不同的交點(diǎn),
如圖所示:
故有k=1,
故答案為{1}.
點(diǎn)評(píng):本題主要考查方程的根的存在性及個(gè)數(shù)判斷,體現(xiàn)了化歸與轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解方程組:
4
a2
+
9
b2
=1
a2-b2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n∈R,定義在區(qū)間[m,n]上的函數(shù)f(x)=log2(4-|x|)的值域是[0,2],若關(guān)于t的方程(
1
2
|t|+m+1=0(t∈R)有實(shí)數(shù)解,則m+n的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2lnx+x-6的零點(diǎn)一定位于下列哪個(gè)區(qū)間( 。
A、(1,2)
B、(2,3)
C、(3,4)
D、(4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x-x2,問方程f(x)=0在區(qū)間[-1,0]內(nèi)有沒有實(shí)數(shù)解?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用換底公式求值或證明:
(1)求值:log225•log34•log59;
(2)求值:(log43+log83)(log32+log92);
(3)證明:logab•logbc•logca=1(a>0,b>0,c>0,a≠1,b≠1,c≠1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
ax+b
(a,b為常數(shù),且a≠0),滿足f(2)=1,方程f(x)=x有唯一實(shí)數(shù)解,求函數(shù)f(x)的解析式和f[f(-4)]的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,S3=9,a3,a5,a8成等比數(shù)列.
(Ⅰ) 求數(shù)列{an}的通項(xiàng)公式an及Sn;
(Ⅱ) 若cn=2n•(
2
an
-λ),n=1,2,3,…,問是否存在實(shí)數(shù)λ,使得數(shù)列{cn}為單調(diào)遞減數(shù)列?若存在,請(qǐng)求出λ的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,對(duì)任意n∈N*,有an+1=
an
1+an
,則a10=( 。
A、10
B、
1
10
C、5
D、
1
5

查看答案和解析>>

同步練習(xí)冊(cè)答案