【題目】自2016年1月1日起,我國全面二孩政策正式實施,這次人口與生育政策的歷史性調(diào)整,使得“要不要再生一個”“生二孩能休多久產(chǎn)假”等成為千千萬萬個家庭在生育決策上避不開的話題.為了解針對產(chǎn)假的不同安排方案形成的生育意愿,某調(diào)查機構(gòu)隨機抽取了200戶有生育二胎能力的適齡家庭進行問卷調(diào)查,得到如下數(shù)據(jù):
產(chǎn)假安排(單位:周) | 14 | 15 | 16 | 17 | 18 |
有生育意愿家庭數(shù) | 4 | 8 | 16 | 20 | 26 |
(1)若用表中數(shù)據(jù)所得的頻率代替概率,面對產(chǎn)假為14周與16周,估計某家庭有生育意愿的概率分別為多少?
(2)假設(shè)從5種不同安排方案中,隨機抽取2種不同安排分別作為備選方案,然后由單位根據(jù)單位情況自主選擇.
①求兩種安排方案休假周數(shù)和不低于32周的概率;
②如果用ξ表示兩種方案休假周數(shù)和.求隨機變量ξ的分布及期望.
【答案】
(1)解:由表中信息可知,當(dāng)產(chǎn)假為14周時某家庭有生育意愿的概率為 ;
當(dāng)產(chǎn)假為16周時某家庭有生育意愿的概率為
(2)①設(shè)“兩種安排方案休假周數(shù)和不低于32周”為事件A,
由已知從5種不同安排方案中,隨機地抽取2種方案選 法共有 (種),
其和不低于32周的選法有(14、18)、(15、17)、(15、18)、(16、17)、(16、18)、(17、18),共6種,
由古典概型概率計算公式得 …
②由題知隨機變量ξ的可能取值為29,30,31,32,33,34,35.
, ,
,
因而ξ的分布列為
ξ | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
P | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 |
所以E(ξ)=29×0.1+30×0.1+31×0.2+32×0.2+33×0.2+34×0.1+35×0.1=32,
【解析】(1)由表中信息可知,可計算出當(dāng)產(chǎn)假為14周和16周時某家庭有生育意愿的概率,(2)①設(shè)“兩種安排方案休假周數(shù)和不低于32周”為事件A,由已知從5種不同安排方案中,隨機地抽取2種方案選法共有10種,由此利用列舉法能求出其和不低于32周的概率,②由題知隨機變量ξ的可能取值為29,30,31,32,33,34,35.分別求出相應(yīng)的概率,由此求出ξ的分布及期望.
【考點精析】掌握離散型隨機變量及其分布列是解答本題的根本,需要知道在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)教育部頒布的《關(guān)于推進中小學(xué)生研學(xué)旅行的意見》,某校計劃開設(shè)八門研學(xué)旅行課程,并對全校學(xué)生的選擇意向進行調(diào)查(調(diào)查要求全員參與,每個學(xué)生必須從八門課程中選出唯一一門課程).本次調(diào)查結(jié)果整理成條形圖如下.圖中,已知課程A,B,C,D,E為人文類課程,課程F,G,H為自然科學(xué)類課程.為進一步研究學(xué)生選課意向,結(jié)合圖表,采取分層抽樣方法從全校抽取1%的學(xué)生作為研究樣本組(以下簡稱“組M”).
(Ⅰ)在“組M”中,選擇人文類課程和自然科學(xué)類課程的人數(shù)各有多少?
(Ⅱ)為參加某地舉辦的自然科學(xué)營活動,從“組M”所有選擇自然科學(xué)類課程的同學(xué)中隨機抽取4名同學(xué)前往,其中選擇課程F或課程H的同學(xué)參加本次活動,費用為每人1500元,選擇課程G的同學(xué)參加,費用為每人2000元.
(。┰O(shè)隨機變量X表示選出的4名同學(xué)中選擇課程G的人數(shù),求隨機變量X的分布列;
(ⅱ)設(shè)隨機變量Y表示選出的4名同學(xué)參加科學(xué)營的費用總和,求隨機變量Y的期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (m,n∈R)在x=1處取得極值2.
(1)求f(x)的解析式;
(2)k為何值時,方程f(x)-k=0只有1個根
(3)設(shè)函數(shù)g(x)=x2-2ax+a,若對于任意x1∈R,總存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos(2x+ ),將y=f(x)的圖象上所有的點的橫坐標(biāo)縮短為原來的 倍,縱坐標(biāo)不變;再把所得的圖象向右平移|φ|個單位長度,所得的圖象關(guān)于原點對稱,則φ的一個值是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義在R上的奇函數(shù)y=f(x),滿足對任意t∈R都有f(t)=f(1﹣t),且x 時,f(x)=﹣x2 , 則f(3)+f(﹣ 的值等于( 。
A.﹣
B.﹣
C.﹣
D.﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax2(a∈R).
(1)若g(x)= 有三個極值點x1 , x2 , x,求a的取值范圍;
(2)若f(x)≥﹣ax3+1對任意x∈[0,1]都恒成立的a的最大值為μ,證明:5 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銳角△ABC中,角A、B、C所對的邊分別為a、b、c,且tanA﹣tanB= (1+tanAtanB).
(Ⅰ)若c2=a2+b2﹣ab,求角A、B、C的大。
(Ⅱ)已知向量 =(sinA,cosA), =(cosB,sinB),求|3 ﹣2 |的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com