已知向量
a
=(1,2),
b
=(1,0),
c
=(4,-3).若λ為實(shí)數(shù),(
a
b
)⊥
c
,則λ=(  )
A、
1
4
B、
1
2
C、1
D、2
考點(diǎn):數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系
專題:平面向量及應(yīng)用
分析:由題意可得
a
b
=(1+4λ,2-3λ),由垂直可得數(shù)量積為0,可得λ的方程,解方程可得.
解答: 解:∵
a
=(1,2),
b
=(1,0),
c
=(4,-3).
a
b
=(1+4λ,2-3λ)
∵(
a
b
)⊥
c
,
∴4(1+4λ)-3(2-3λ)=0,
解得λ=
1
2

故選:B
點(diǎn)評(píng):本題考查數(shù)量積與向量的垂直關(guān)系,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)為了研究函數(shù)f(x)=
1+x2
+
1+(1-x)2
(0≤x≤1)的性質(zhì),構(gòu)造了如圖所示的兩個(gè)邊長為1的正方形ABCD和BEFC,點(diǎn)P是邊BC上的一個(gè)動(dòng)點(diǎn),設(shè)CP=x,則f(x)=PF+AP.那么可推知方程f(x)=
6
解的個(gè)數(shù)是(  )
A、0B、1C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P(-1,2)到直線2x-y+5=0的距離d=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實(shí)數(shù)a,b,c,d滿足a+b=c+d=1,ac+bd>1,求證:a,b,c,d中至少有一個(gè)是負(fù)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足z(1+i)=1(其中i為虛數(shù)單位),則z=(  )
A、
-1+i
2
B、
-1-i
2
C、
1+i
2
D、
1-i
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知,如圖,三棱錐的三視圖如圖所示,其中俯視圖是直角三角形,則這個(gè)三棱錐的體積是(  )
A、18cm3
B、12cm3
C、20cm3
D、15cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x-1,x≤1
f(x-1)+2,x>1
,則方程f(x)=2x在[0,2015]內(nèi)的根的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(ωx-
π
4
)(ω>0)的最小正周期為π,則ω的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(α)=
sin(
π
2
-α)sin(-α)tan(π-α)
tan(-α)sin(π-α)

(1)化簡f(α).
(2)若α為第三象限角,且cos(
3
2
π-α)=
1
5
,求f(α)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案