分析 (1)運(yùn)用乘1法,可得$\frac{1}{a}$+$\frac{4}$=($\frac{1}{a}$+$\frac{4}$)(a+b),展開(kāi)后,運(yùn)用基本不等式即可得到所求最小值;
(2)由恒成立思想可得|2m-3|≤9,再由絕對(duì)值不等式的解法,即可得到所求范圍.
解答 解:(1)由a+b=1,a>0,b>0,
可得$\frac{1}{a}$+$\frac{4}$=($\frac{1}{a}$+$\frac{4}$)(a+b)=5+$\frac{a}$+$\frac{4a}$≥5+2$\sqrt{\frac{a}•\frac{4a}}$=9,
當(dāng)且僅當(dāng)$\frac{a}$=$\frac{4a}$即a=$\frac{1}{3}$且b=$\frac{2}{3}$時(shí)取等號(hào),
則$\frac{1}{a}$+$\frac{4}$的最小值為9;
(2)由$\frac{1}{a}$+$\frac{4}$的最小值為9,
不等式$\frac{1}{a}$+$\frac{4}$≥|2m-3|對(duì)任意a,b恒成立,
可得|2m-3|≤9,
即為-9≤2m-3≤9,解得-3≤m≤6,
即有m的取值范圍是[-3,6].
點(diǎn)評(píng) 本題考查最值的求法,注意運(yùn)用乘1法和基本不等式,考查不等式恒成立問(wèn)題的解法,注意運(yùn)用最值和絕對(duì)值不等式的解法,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 相交 | B. | 相切 | C. | 相離 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
P(K2>k0) | 0.10 | 0.05 | 0.01 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12 | B. | 48 | C. | 72 | D. | 120 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 圓 | B. | 橢圓 | C. | 雙曲線 | D. | 拋物線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 90° | C. | 30°或90° | D. | 60°或120° |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com