7.已知a=($\frac{1}{2}$)${\;}^{\frac{1}{2}}$,b=($\frac{1}{3}$)-2,c=log${\;}_{\frac{1}{2}}$2,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

分析 判斷三個數(shù)與0,1的大小,即可得到結(jié)果.

解答 解:由于0<a=($\frac{1}{2}$)${\;}^{\frac{1}{2}}$<1,b=($\frac{1}{3}$)-2=9,c=log${\;}_{\frac{1}{2}}$2<0,
則a,b,c的大小關(guān)系是 c<a<b,
故選:D.

點評 本題主要考查冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性的應用,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=log2(x2-2x-3),則使f(x)為減函數(shù)的區(qū)間是( 。
A.(3,6)B.(-1,0)C.(1,2)D.(-3,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知樣本:4、2、1、0、-2,則該樣本的標準差為( 。
A.$\sqrt{2}$B.2C.4D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某校高一學生共有500人,為了了解學生的歷史學習情況,隨機抽取了50名學生,對他們一年來4次考試的歷史平均成績進行統(tǒng)計,得到頻率分布直方圖如圖所示,后三組頻數(shù)成等比數(shù)列.
(1)求第五、六組的頻數(shù),補全頻率分布直方圖;
(2)若每組數(shù)據(jù)用該組區(qū)間中點值(例如區(qū)間[70,80)的中點值是
75作為代表),試估計該校高一學生歷史成績的眾數(shù),中位數(shù)和平均分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=ax3+bx2+cx+d(a<$\frac{2}{3}$b),在R上是單調(diào)遞增函數(shù),則$\frac{3a+2b+c}{2b-3a}$的最小值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設全集U=R,集合A={x|-1<x<4},B={y|y=x+1,x∈A},(∁UA)∩(∁UB)=(-∞,-1]∪[5,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=x2-2x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.
(1)求a,k的值;
(2)當x為何值時,f(logax)有最小值?求出該最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)f(x)=$\frac{{3{x^2}}}{{\sqrt{1-x}}}$+ln(x+1)的定義域為(-1,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.當a∈{-1,$\frac{1}{2}$,2,3}時,冪函數(shù)f(x)=xa的圖象不可能經(jīng)過( 。
A.第二、四象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習冊答案