10.已知函數(shù)g(x)=f(x)•$\frac{x}{{x}^{2}-1}$(x≠±1)是偶函數(shù),且f(x)不恒等于0,則函數(shù)f(x)是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)

分析 直接利用函數(shù)的奇偶性,判斷求解即可.

解答 解:函數(shù)g(x)=f(x)•$\frac{x}{{x}^{2}-1}$(x≠±1)是偶函數(shù),
可得g(-x)=f(-x)•$\frac{-x}{{(-x)}^{2}-1}$=g(x)=f(x)•$\frac{x}{{x}^{2}-1}$,f(x)不恒等于0,
可得f(-x)=-f(x),
函數(shù)f(x)是奇函數(shù).
故選:A.

點評 本題考查函數(shù)的奇偶性的判斷,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=2$\sqrt{x}$-$\frac{1}{x}$在區(qū)間(0,+∞)內(nèi)( 。
A.是增函數(shù)B.是減函數(shù)
C.是增函數(shù)又是減函數(shù)D.不具單調(diào)性

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.f(x)是定義在[-1,1]上的奇函數(shù),若對任意的m,n∈[-1,1]時,有f(m)+f(n)<m+n.
(1)證明:f(x)在[-1,1]上是單調(diào)增函數(shù);
(2)解不等式f(x-1)+f(2x-3)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知集合{x|x<-2或x>3}是集合{x|2ax2+(2-ab)x-b>0}的子集,求實數(shù)a,b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)y=kx+b是R上的減函數(shù),則( 。
A.k>0B.k<0C.k≠0D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=5,則$\frac{a}{{a}^{2}+1}$的值為( 。
A.$\frac{1}{5}$B.$\frac{1}{23}$C.$\frac{1}{25}$D.$\frac{1}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.2sin21°+2sin22°+2sin23°+…+2sin289°=89.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若圓錐的表面積為S,且它的側(cè)面展開圖是一個半圓,則這個圓錐的底面直徑為(  )
A.$\sqrt{\frac{S}{3π}}$B.2$\sqrt{\frac{S}{3π}}$C.$\sqrt{\frac{S}{5π}}$D.2$\sqrt{\frac{S}{5π}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=-2cos2($\frac{π}{4}$+x)+1是( 。
A.最小正周期為π的奇函數(shù)B.最小正周期為π的偶函數(shù)
C.最小正周期為$\frac{π}{2}$的奇函數(shù)D.最小正周期為$\frac{π}{2}$的非奇非偶函數(shù)

查看答案和解析>>

同步練習(xí)冊答案