分析 (1)證明:△ACB∽△CBP,即可證明BC 2=AC•BP.
(2)由題意可得EC2=EA•EB=EA(EA+AB),即可解得EA的值.
解答 解:(1)證明:∵AB為圓O的直徑,∴∠ACB=90°.
又AC∥BP,
∴∠ACB=∠CBP,∠ECA=∠P.
∵EC為圓O的切線,∴∠ECA=∠ABC,∴∠ABC=∠P,
∴△ACB∽△CBP.
∴$\frac{AC}{BC}=\frac{BC}{BP}$,即BC 2=AC•BP.…(4分)
(2)解:∵EC為圓O的切線,EC=2$\sqrt{5}$,AB=8,…(5分)
∴EC2=EA•EB=EA(EA+AB),
∴20=EA(EA+8),
∴EA=2. …(6分)
點評 本題考查三角形相似的判定性質(zhì)的運用,考查切割線定理的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,1) | B. | (1,3) | C. | (-∞,-1) | D. | (-3,1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com