15.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且ccosA,bcosB,acosC成等差數(shù)列.
(1)求角B的大小;
(2)若a+c=$\sqrt{10}$,b=2,求△ABC的面積.

分析 (1)由等差數(shù)列和正弦定理以及和差角的三角函數(shù)公式可得cosB,由三角形的內(nèi)角的范圍可得B=$\frac{π}{3}$;
(2)把已知數(shù)代入余弦定理整體可得ac=2,代入三角形的面積公式可得.

解答 解:(1)∵在△ABC中ccosA,bcosB,acosC成等差數(shù)列,
∴2bcosB=ccosA+acosC,
由正弦定理可得2sinBcosB=sinCcosA+sinAcosC,
∴2sinBcosB=sin(C+A)=sinB,由B∈(0,π)可得sinB>0,
約掉sinB可得cosB=$\frac{1}{2}$,再由B∈(0,π)可得B=$\frac{π}{3}$;
(2)∵a+c=$\sqrt{10}$,b=2,B=$\frac{π}{3}$,
∴由余弦定理可得b2=a2+c2-2accosB,
代入數(shù)據(jù)可得4=a2+c2-ac=(a+c)2-3ac=10-3ac,解得ac=2,
∴△ABC的面積S=$\frac{1}{2}$acsinB=$\frac{1}{2}$×2×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$

點(diǎn)評(píng) 本題考查正余弦定理解三角形,涉及整體思想和三角形的面積公式,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x|x-a|
(1)判斷f(x)的奇偶性,并證明;
(2)求實(shí)數(shù)a的取值范圍,使函數(shù)g(x)=f(x)+2x+1在R上恒為增函數(shù);
(3)求函數(shù)f(x)在[-1,1]的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖:已知,在△OBC中,點(diǎn)A是BC的中點(diǎn),$\overrightarrow{OD}$=2$\overrightarrow{DB}$,DC和OA交于點(diǎn)E,則△OEC與△OBC的面積的比值是(  )
A.$\frac{4}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的(n∈N*)且n≥2,都有Sn=2Sn-1+1,若a1=1,bn=log2an.解決下列問題:(1)求證:數(shù)列{an}為等比數(shù)列;
(2)求數(shù)列{$\frac{3}{(_{n}+1)(_{n+1}+2)}$}的前n項(xiàng)和為Tn;
(3)求$\frac{_{n+1}}{(n+1)_{n-2}}$(n∈N*)的最大值及取得最大值時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知平面向量$\overrightarrow{α}$,$\overrightarrow{β}$,|$\overrightarrow{α}$|=1,$\overrightarrow{β}$=(2,0),$\overrightarrow{α}$⊥($\overrightarrow{α}$-2$\overrightarrow{β}$),求|2$\overrightarrow{α}$+$\overrightarrow{β}$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足csinA=$\sqrt{3}$acosC.
(I)求角C的大。
(Ⅱ)若b=2$\sqrt{3}$,c=5,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={-1,0,1},B={x|y=x2,x∈R},則A∩B=( 。
A.{0,1}B.{-1,0,1}C.{1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖所示的程序框圖的運(yùn)行結(jié)果為(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)Rn是等比數(shù)列{an}的前n項(xiàng)的積,若25(a1+a3)=1,a5=27a2,則當(dāng)Rn取最小值時(shí),n=6.

查看答案和解析>>

同步練習(xí)冊(cè)答案