Processing math: 100%
12.設(shè)函數(shù)f(x)=x2+3x+3-a•ex(a為非零實(shí)數(shù)),若f(x)有且僅有一個(gè)零點(diǎn),則a的取值范圍為(0,e)∪(3,+∞).

分析 令f(x)=0得a=x2+3x+3ex,設(shè)g(x)=x2+3x+3ex,求出g(x)的單調(diào)區(qū)間和極值,令a=g(x)只有一解得出a的范圍.

解答 解:令f(x)=0得x2+3x+3=aex,∴a=x2+3x+3ex,
令g(x)=x2+3x+3ex,則g′(x)=x2xex,
令g′(x)=0得x=-1或x=0.
∴當(dāng)x<-1或x>0時(shí),g′(x)<0,當(dāng)-1<x<0時(shí),g′(x)>0.
∴g(x)在(-∞,-1)上單調(diào)遞減,在(-1,0)上單調(diào)遞增,在(0,+∞)上單調(diào)遞減.
∴當(dāng)x=-1時(shí),g(x)取得極小值g(-1)=e,當(dāng)x=0時(shí),g(x)取得極大值g(0)=3,
∵f(x)只有一個(gè)零點(diǎn),∴a=g(x)只有一解.
xlimg(x)=+∞,x+limg(x)=0,
∴0<a<e或a>3.
故答案為(0,e)∪(3,+∞).

點(diǎn)評(píng) 本題考查了函數(shù)單調(diào)性,極值與零點(diǎn)個(gè)數(shù)的關(guān)系,函數(shù)單調(diào)性的判斷,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.非零復(fù)數(shù)z1,z2滿足|z1+z2|=|z1-z2|,u=(z1z22,則u( �。�
A.u<0B.u>0C.u=0D.以上都可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(Ⅰ)求1+cos20°2sin20°-2sin10°•tan80°的值.
(Ⅱ)已知cosα=17,cos(α-β)=1314,且0<β<α<π2.求β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓Cx2a2+y2b2=1ab0的左、右焦點(diǎn)為F1,F(xiàn)2,M為短軸端點(diǎn),且S△MF1F2=4,離心率為22,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)過點(diǎn)O作兩條射線,與橢圓C分別交于A,B兩點(diǎn),且滿足|OA+OB|=|OAOB|,證明點(diǎn)O到直線AB的距離為定值,并求弦AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.“0<a<8”是“不等式2ax2+ax+1>0恒成立”的( �。�
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求函數(shù)y=(x-2)(x-3)(x-4)在x=1處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若函數(shù)fx=sinωx+acosωxω0(guān)(diǎn)Mπ30(duì),且在x=π6處函數(shù)有最小值,則a+ω在[0,10]上的一個(gè)可能值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若平面α的一個(gè)法向量為n=(4,1,1),直線l的一個(gè)方向向量為a=(-2,-3,3),則l與α所成角的正弦值為41133

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖,若f(x)=3x2-1,取g=15則輸出的值為( �。�
A.1932B.916C.58D.34

查看答案和解析>>

同步練習(xí)冊(cè)答案