17.求函數(shù)y=(x-2)(x-3)(x-4)在x=1處的切線方程.

分析 求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義即可求出切線方程.

解答 解:∵y=(x-2)(x-3)(x-4),
∴y′=(x-3)(x-4)+(x-2)[(x-3)(x-4)]′=(x-3)(x-4)+(x-2)[(x-3)+(x-4)]
=3x2-18x+26,
∴x=1,y′=11,
∵x=1,y=-6,
∴函數(shù)y=(x-2)(x-3)(x-4)在x=1處的切線方程為y+6=11(x-1),
即11x-y-17=0.

點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)的幾何意義,根據(jù)導(dǎo)數(shù)和切線斜率之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,1)上為增函數(shù)的是( 。
A.y=ln|x|B.y=x-2C.y=x+sinxD.y=cos(-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知a<-1,函數(shù)f(x)=|x3-1|+x3+ax(x∈R).
(I)求函數(shù)f(x)的最小值;
(Ⅱ)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1,x2,試判斷f(x1x2)與a+1的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)求證:$\sqrt{3}+\sqrt{7}<2\sqrt{5}$.
(2)在數(shù)列{an}中,${a_1}=1,{\;}_{\;}{a_{n+1}}=\frac{{2{a_n}}}{{2+{a_n}}}{\;}_{\;}(n∈{N^+})$,試猜想這個(gè)數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)函數(shù)f(x)=x2+3x+3-a•ex(a為非零實(shí)數(shù)),若f(x)有且僅有一個(gè)零點(diǎn),則a的取值范圍為(0,e)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)$y=cos(\frac{π}{4}-\frac{x}{3})$的最小正周期是( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$y=3sin(2x+\frac{π}{4}),x∈[0,π]$
(1)求函數(shù)的單調(diào)區(qū)間
(2)求使函數(shù)取得最大值、最小值時(shí)的自變量x的值,并分別寫出最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在極坐標(biāo)系中,點(diǎn)M(3,$\frac{π}{3}$)和點(diǎn)N(3,$\frac{2}{3}$π)的位置關(guān)系是(  )
A.關(guān)于極軸所在直線對(duì)稱B.重合
C.關(guān)于直線$θ=\frac{π}{2}(ρ∈R)$對(duì)稱D.關(guān)于極點(diǎn)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知復(fù)數(shù)z=m2-1+(m+1)i(其中m∈R,i是虛數(shù)單位)是純虛數(shù),則復(fù)數(shù)m+i的共軛復(fù)數(shù)是( 。
A.1+iB.1-iC.-1-iD.-i

查看答案和解析>>

同步練習(xí)冊(cè)答案