2.執(zhí)行如圖所示的程序框圖,若f(x)=3x2-1,取g=$\frac{1}{5}$則輸出的值為( 。
A.$\frac{19}{32}$B.$\frac{9}{16}$C.$\frac{5}{8}$D.$\frac{3}{4}$

分析 此框圖的主要作用是用二分法求函數(shù)的零點,依次計算a、b的值,直到滿足條件b-a<g=0.2,求出$\frac{a+b}{2}$的值即可.

解答 解:由程序框圖知此框圖的主要作用是用二分法求函數(shù)的零點,
第一次運行a=$\frac{1}{2}$,b=1,b-a=0.5;
第二次運行a=$\frac{1}{2}$,b=$\frac{3}{4}$,b-a=0.25;
第三次運行a=$\frac{1}{2}$,b=$\frac{5}{8}$,b-a=0.125,滿足條件b-a<g=0.2,
程序運行終止,輸出$\frac{a+b}{2}$=$\frac{9}{16}$.
故選:B.

點評 本題考查了二分法求函數(shù)的零點的程序框圖,關鍵是確定程序運行終止時a、b的值,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.設函數(shù)f(x)=x2+3x+3-a•ex(a為非零實數(shù)),若f(x)有且僅有一個零點,則a的取值范圍為(0,e)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設集合A={x||x-1|-|x-5|≤-2},集合B為函數(shù)y=lg(x-1)的定義域,則A∩B=( 。
A.(1,2)B.[1,2]C.[1,2)D.(1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知A(2,3),B(1,4),且$\frac{1}{2}$$\overrightarrow{AB}$=(sinx,cosy),x,y∈(-$\frac{π}{2}$,$\frac{π}{2}$),則x+y=$\frac{π}{6}$或-$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設函數(shù)f(x)=nlnx-$\frac{{e}^{x}}{{e}^{n}}$+2016,n為大于零的常數(shù).
(1)求f(x)的單調區(qū)間;
(2)若x∈(0,$\frac{{t}^{2}+(2n-1)t}{2}$),t∈(0,2),求函數(shù)f(x)的極值點;
(3)觀察f(x)的單調性及最值,證明:ln$\frac{{n}^{2}+1}{{n}^{2}}$<$\frac{{e}^{\frac{1}{n}}-1}{n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知復數(shù)z=m2-1+(m+1)i(其中m∈R,i是虛數(shù)單位)是純虛數(shù),則復數(shù)m+i的共軛復數(shù)是( 。
A.1+iB.1-iC.-1-iD.-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.(1)求復數(shù)$\frac{{{{({1+i})}^2}}}{1-i}$的實部;
(2)已知$\frac{m}{1+i}$=1-ni(m,n∈R,i是虛數(shù)單位),求m,n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.平面上四個點P,A,B,C滿足$\overrightarrow{PC}$-$\overrightarrow{AC}$=2$\overrightarrow{AB}$,且$\overrightarrow{PA}$=λ$\overrightarrow{PB}$,則實數(shù)λ的值為( 。
A.2B.$\frac{2}{3}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.一戶居民根據(jù)以往的月用電量情況,繪制了月用電量的頻率分布直方圖(月用電量都在25度到325度之間)如圖所示,將月用電量落入該區(qū)間的頻率作為概率.若每月用電量在200度以內(含200度),則每度電價0.5元.若每月的用電量超過200度,則超過的部分每度電價0.6元.記X(單位:度,25≤X≤325)為該用戶下個月的用電量,T(單位:元)為下個月所繳納的電費.
(1)估計該用戶的月用電量的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)將T表示為X的函數(shù);
(3)根據(jù)直方圖估計下個月所繳納的電費T∈[37.5,115)的概率.

查看答案和解析>>

同步練習冊答案