4.已知過球面上A、B、C三點的截面和球心O的距離等于球半徑的一半,且AB=BC=CA=2,則球O的體積為(  )
A.$\frac{256π}{81}$B.$\frac{64π}{27}$C.$\frac{16π}{9}$D.$\frac{4π}{3}$

分析 由AB=BC=CA=2,求得△ABC的外接圓半徑為r,再由R2-($\frac{1}{2}$R)2=$\frac{4}{3}$,求得球的半徑,即可求解球O的體積.

解答 解:因為AB=BC=CA=2,
所以△ABC的外接圓半徑為r=$\frac{2\sqrt{3}}{3}$.
設(shè)球半徑為R,則R2-($\frac{1}{2}$R)2=$\frac{4}{3}$,
所以R=$\frac{4}{3}$
V=$\frac{4}{3}$πR3=$\frac{256π}{81}$.
故選:A.

點評 本題主要考查球O的體積,涉及到截面圓圓心與球心的連垂直于截面,這是求得相關(guān)量的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

14.設(shè)a>0,函數(shù)f(x)=$\frac{{4}^{x}}{a}+\frac{a}{{4}^{x}}$是定義域為R的偶函數(shù).
(1)求實數(shù)a的值;
(2)證明:f(x)在(0,+∞)上是增函數(shù);
(3)設(shè)g(x)=$\frac{{4}^{x}}{f(x)-{4}^{-x}+2}$,求g($\frac{1}{2015}$)+g($\frac{2}{2015}$)+…+g($\frac{2013}{2015}$)+g($\frac{2014}{2015}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.“x>1”是“l(fā)og${\;}_{\frac{1}{2}}$(x+2)<0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.己知數(shù)列{an}的前n項和Sn=$\frac{{n}^{2}+n}{2}$,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=2an+(-1)nan,求數(shù)列{bn}的前2n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.經(jīng)過兩點$A({m,\sqrt{3}})$,$B({-m,-\sqrt{3}m})$的直線的傾斜角為30°,則m=(  )
A.-3B.$-\frac{3}{5}$C.$-\frac{1}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,各棱長均為2,D為線段B1C1中點.
(Ⅰ) 證明:AC1∥平面A1BD;
(Ⅱ) 求BB1與平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知圓C的圓心在射線3x-y=0(x≥0)上,與直線x=4相切,且被直線3x+4y+10=0截得的弦長為$4\sqrt{3}$.
(Ⅰ) 求圓C的方程;
(Ⅱ) 點A(1,1),B(-2,0),點P在圓C上運動,求|PA|2+|PB|2的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知等差數(shù)列{an}的前n項的和為Sn,若a5+a6=10,則S10=( 。
A.40B.45C.50D.55

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.作出函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤0}\\{-2x+2,x>0}\end{array}\right.$ 的圖象并寫出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案