19.以下五個(gè)寫法中:①{0}∈{0,1,2};②∅⊆{1,2};③{0,1,2}={2,0,1};④0∈∅;⑤A∩∅=A,正確的個(gè)數(shù)有2.

分析 根據(jù)“∈”用于表示集合與元素的關(guān)系,可判斷①的真假;根據(jù)空集的性質(zhì),可判斷②④⑤的正誤;根據(jù)合元素的無序性,可判斷③的對(duì)錯(cuò),進(jìn)而得到答案.

解答 解:“∈”用于表示集合與元素的關(guān)系,故:①{0}∈{0,1,2}錯(cuò)誤;
空集是任一集合的子集,故②∅⊆{1,2}正確;
根據(jù)集合元素的無序性,可得③{0,1,2}={2,0,1}正確;
空集不包含任何元素,故④0∈∅錯(cuò)誤;
空集與任一集合的交集均為空集,故⑤A∩∅=A錯(cuò)誤,
故正確的個(gè)數(shù)有2個(gè),
故答案為:2.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是元素與集合關(guān)系,空間的性質(zhì)及集合相等的概念,熟練掌握集合的基本概念及性質(zhì)是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知等差數(shù)列{an}的前n項(xiàng)和是Sn,若S30=13S10,S10+S30=140,則S20的值是(  )
A.60B.70C.$\frac{170}{3}$D.$\frac{160}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.圓x2+y2-4x+2=0與直線l相切于點(diǎn)A(3,1),則直線l的方程為x+y-4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.“x>2”是“x2-4>0”的( 。
A.必要而不充分條件B.充分而不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.解下列不等式
(1)$\frac{3x}{x+2}≤3$
(2)x2-2x-15<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=3|x+1|的單調(diào)遞減區(qū)間是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=2sin(ωx+φ)$(ω>0,-\frac{π}{2}<φ<\frac{π}{2})$的部分圖象如圖所示,則f(x)的單調(diào)增區(qū)間是[kπ-$\frac{π}{12}$,$\frac{5π}{12}+kπ$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.解下列關(guān)于x的不等式:
(1)$(\frac{1}{3})^{{x}^{2}-2x}>1$;
(2)log2$\sqrt{x}+lo{g}_{\sqrt{2}}(2x)<\frac{23}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.己知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.
(1)若1是關(guān)于x的方程f(x)-g(x)=0的一個(gè)解,求t的值;
(2)當(dāng)0<a<1且t=-1時(shí),解不等式f(x)≤g(x);
(3)若函數(shù)F(x)=af(x)+tx2-2t+1在區(qū)間(-1,2]上有零點(diǎn),求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案