16.sin17°sin223°-cos17°sin313°等于( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

分析 由條件利用誘導(dǎo)公式、兩角和差的余弦公式化簡(jiǎn)所給的式子,可得結(jié)果.

解答 解:sin17°sin223°-cos17°sin313°
=sin17°sin(180°+43°)-cos17°sin(360°-47°)
=-sin17°sin43°+cos17°sin47°=-sin17°sin43°+cos17°cos43°
=cos(17°+43°)=cos60°=$\frac{1}{2}$,
故選:B.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式、兩角和差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.奇函數(shù)f(x)對(duì)任意x∈R都有f(x+2)=f(-x)成立,且f(1)=1,則f(2014)+f(2015)+f(2016)的值為( 。
A.1B.-1C.6D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)=ln$\frac{e+ex}{1-x}$的最大值為M,最小值為m,則M+m=(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知x,y,z∈(-1,1),且xyz=$\frac{1}{36}$,求函數(shù)u=$\frac{1}{1-{x}^{2}}$+$\frac{4}{4-{y}^{2}}$+$\frac{9}{9-{z}^{2}}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在△ABC中,三個(gè)內(nèi)角A,B,C所對(duì)的邊為a,b,c,且a=4.
(1)若sin2A-sinBsinC=0,sinA>cosA,求sinA的取值范圍;
(2)若a=2bcosC,(2b-c)cosA-acosC=0,求三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)(x+1)3=a0+a1x+a2x2+a3x3,那么$\frac{{a}_{0}+{a}_{2}}{{a}_{1}+{a}_{3}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知$\left\{{\frac{f(n)}{n}}\right\}$是等差數(shù)列,f(1)=2,f(2)=6,則f(n)=n(n+1),數(shù)列{an}滿(mǎn)足an+1=f(an),a1=1,數(shù)列$\left\{{\frac{1}{{1+{a_n}}}}\right\}$的前n項(xiàng)和為Sn,則${S_{2015}}+\frac{1}{{{a_{2016}}}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.過(guò)拋物線(xiàn)y2=8x的焦點(diǎn)F作傾斜角為135°的直線(xiàn)交拋物線(xiàn)于A、B兩點(diǎn),則弦長(zhǎng)AB的長(zhǎng)為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)x∈R,則x>π的一個(gè)必要不充分條件是( 。
A.x>3B.x<3C.x>4D.x<4

查看答案和解析>>

同步練習(xí)冊(cè)答案