1.設(shè)(x+1)3=a0+a1x+a2x2+a3x3,那么$\frac{{a}_{0}+{a}_{2}}{{a}_{1}+{a}_{3}}$=1.

分析 求出展開式系數(shù),即可求解比值.

解答 解:(x+1)3=a0+a1x+a2x2+a3x3,
可得a0=1,a1=3,a2=3,a3=1.
那么$\frac{{a}_{0}+{a}_{2}}{{a}_{1}+{a}_{3}}$=$\frac{1+3}{3+1}$=1.
故答案為:1.

點(diǎn)評(píng) 本題考查二項(xiàng)式定理系數(shù)的性質(zhì),考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.正弦函數(shù)y=sinx的圖象上最高點(diǎn)和最低點(diǎn)之間的最短距離是( 。
A.2B.2$\sqrt{2}$C.$\sqrt{4+{π}^{2}}$D.2$\sqrt{1+{π}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足an+1-an=2n,且a1=1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{{a}_{n}+1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知n=∫${\;}_{0}^{2}$($\frac{2}{π}$$\sqrt{4-{x}^{2}}$+2x)dx,則二項(xiàng)式(x2-$\frac{2}{x}$)n的展開式中含x3的系數(shù)為-160(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.sin17°sin223°-cos17°sin313°等于(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.y=x+$\frac{1}{x}$的單調(diào)區(qū)間:增區(qū)間(-∞,-1),(1,+∞);減區(qū)間(-1,0),(0,1);y=ax+$\frac{x}$(a>0,b>0)的單調(diào)區(qū)間:增區(qū)間(-∞,-$\frac{\sqrt{ab}}{a}$),($\frac{\sqrt{ab}}{a}$,+∞);減區(qū)間(-$\frac{\sqrt{ab}}{a}$,0),($\frac{\sqrt{ab}}{a}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在菱形ABCD中,∠A=60°,AB=$\sqrt{3}$,將△ABC沿BD折起到△PBD的位置,若平面PBD⊥平面CBD,則三棱錐P-BCD的外接球體積為$\frac{5\sqrt{5}}{6}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.函數(shù)f(x)=$\sqrt{3}$cos2(ωx+φ)-cos(ωx+φ)•sin(ωx+φ+$\frac{π}{3}$)-$\frac{\sqrt{3}}{4}$(ω>0,0<φ<$\frac{π}{2}$)同時(shí)滿足下列兩個(gè)條件:
①f(x)圖象最值點(diǎn)與左右相鄰的兩個(gè)對(duì)稱中心構(gòu)成等腰直角三角形
②($\frac{2}{3}$,0)是f(x)的一個(gè)對(duì)稱中心、
(1)當(dāng)x∈[0,2]時(shí),求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)令g(x)=f2(x-$\frac{5}{6}$)+$\frac{1}{4}$f(x-$\frac{1}{3}$)+m,若g(x)在x∈[$\frac{5}{6}$,$\frac{3}{2}$]時(shí)有零點(diǎn),求此時(shí)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知A={x|$\frac{1}{9}$<($\frac{1}{3}$)x<3},B={x|log2x>0},A∪B=(-1,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案