7.已知m、n、s、t∈R*,m+n=3,$\frac{m}{s}+\frac{n}{t}=1$其中m、n是常數(shù)且m<n,若s+t的最小值 是$3+2\sqrt{2}$,滿足條件的點(m,n)是橢圓$\frac{x^2}{4}+\frac{y^2}{16}=1$一弦的中點,則此弦所在的直線方程為( 。
A.x-2y+3=0B.4x-2y-3=0C.x+y-3=0D.2x+y-4=0

分析 由已知得(s+t)($\frac{m}{s}+\frac{n}{t}$)的最小值 是$3+2\sqrt{2}$,即(s+t)($\frac{m}{s}+\frac{n}{t}$)=m+n+$\frac{mt}{s}+\frac{ns}{t}$$≥m+n+2\sqrt{mn}$,滿足$\frac{mt}{s}=\frac{ns}{t}\\;即m=n$時取最小值,得m=1,n=2.設以(1,2)為中點的弦交橢圓$\frac{x^2}{4}+\frac{y^2}{16}=1$于A(x1,y1),B(x2,y2),
由中點從坐標公式知x1+x2=2,y1+y2=4,把A(x1,y1),B(x2,y2)分別代入4x2+y2=16,得$\left\{\begin{array}{l}{4{{x}_{1}}^{2}+{{y}_{1}}^{2}=16}\\{4{{x}_{2}}^{2}+{{y}_{2}}^{2}=16}\end{array}\right.$,兩式相減得2(x1-x2)+(y1-y2)=0,求得k 即可

解答 解:∵sm、n、s、t為正數(shù),m+n=3,$\frac{m}{s}+\frac{n}{t}=1$,s+t的最小值 是$3+2\sqrt{2}$,
∴(s+t)($\frac{m}{s}+\frac{n}{t}$)的最小值 是$3+2\sqrt{2}$,
∴(s+t)($\frac{m}{s}+\frac{n}{t}$)=m+n+$\frac{mt}{s}+\frac{ns}{t}$$≥m+n+2\sqrt{mn}$,滿足$\frac{mt}{s}=\frac{ns}{t},\\;即m=n$時取最小值,
此時最小值為m+n+2$\sqrt{mn}$=3+2$\sqrt{2}$,得:mn=2,又:m+n=3,所以,m=1,n=2.
設以(1,2)為中點的弦交橢圓$\frac{x^2}{4}+\frac{y^2}{16}=1$于A(x1,y1),B(x2,y2),
由中點坐標公式知x1+x2=2,y1+y2=4,
把A(x1,y1),B(x2,y2)分別代入4x2+y2=16,
得$\left\{\begin{array}{l}{4{{x}_{1}}^{2}+{{y}_{1}}^{2}=16}\\{4{{x}_{2}}^{2}+{{y}_{2}}^{2}=16}\end{array}\right.$
兩式相減得2(x1-x2)+(y1-y2)=0,
∴k=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}=-2$.∴此弦所在的直線方程為y-2=-2(x-1),
即2x+y-4=0.
故選:D.

點評 本題考查了橢圓的性質(zhì)和應用,解題時要認真審題,注意均值不等式和點差法的合理運用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.利用數(shù)學歸納法證明:$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{2n-1}-\frac{1}{2n}=\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.如圖,在Rt△ABC中,兩條直角邊分別為AB=2$\sqrt{3}$,BC=2,P為△ABC內(nèi)一點,∠BPC=90°,若∠APB=150°,則tan∠PBA=$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知命題p:拋物線方程是x=4y2,則它的準線方程為x=1,命題q:雙曲線$\frac{x^2}{4}-\frac{y^2}{5}=-1$的一個焦點是(0,3),其中真命題是( 。
A.pB.¬qC.p∧qD.p∨q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知下面四個命題:
(1)從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每15分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這樣的抽樣是系統(tǒng)抽樣;
(2)兩個隨機變量相關性越強,則相關系數(shù)的絕對值越接近于1;
(3)對分類變量X和Y的隨機變量K2的觀測值k來說,k越小,“X與Y有關系”的把握程度越大;
(4)在回歸直線方程$\widehat{y}$=0.4x+12中,當解釋變量x每增加一個單位時,預報變量大約增加0.4個單位.
其中所有真命題的序號是(1)(2)(4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若$\overrightarrow{a}$=(2,3,m),$\overrightarrow$=(2n,6,8)且$\overrightarrow{a}$,$\overrightarrow$為共線向量,則m+n=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在平面直角坐標系xOy中,設命題p:橢圓C:$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{8-m}$=1的焦點在x軸上:命題q:直線l:x-y+m=0與圓O:x2+y2=9有公共點.若命題p、命題q中有且只有一個為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知命題p:|x-4|≤6,q:x2-m2-2x+1≤0(m>0),若¬p是¬q的必要不充分條件,則實數(shù)m的取值范圍為( 。
A.[9,13]B.(3,9)C.[9,+∞)D.(9,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列說法正確的是( 。
A.若$\frac{1}{a}>\frac{1}$,則a<b
B.若命題$P:?x∈({0,π}),x+\frac{1}{sinx}≤2$,則?P為真命題
C.已知命題p,q,“p為真命題”是“p∧q為真命題”的充要條件
D.若f(x)為R上的偶函數(shù),則$\int_{-1}^1{f(x)dx}=0$

查看答案和解析>>

同步練習冊答案