18.如圖,在Rt△ABC中,兩條直角邊分別為AB=2$\sqrt{3}$,BC=2,P為△ABC內(nèi)一點(diǎn),∠BPC=90°,若∠APB=150°,則tan∠PBA=$\frac{\sqrt{3}}{4}$.

分析 由題意設(shè)∠PBA=α,在Rt△PBC中求出PB,在△PBA中,由∠APB=150°和內(nèi)角和定理求出∠PAB,由正弦定理列出方程,由兩角差的正弦函數(shù)化簡后,由商的關(guān)系求出tan∠PBA的值.

解答 解:由題意知:
∠ABC=∠BPC=90°,AB=2$\sqrt{3}$,BC=2
設(shè)∠PBA=α,在Rt△PBC中,
PB=BCcos(90°-α)=2sinα,
在△PBA中,∠APB=150°,則∠PAB=30°-α,
由正弦定理得,$\frac{AB}{sin∠APB}=\frac{PB}{sin∠PAB}$,
則$\frac{2\sqrt{3}}{\frac{1}{2}}=\frac{2sinα}{sin(30°-α)}$,即$\frac{sinα}{sin(30°-α)}=2\sqrt{3}$,
sinα=2$\sqrt{3}$($\frac{1}{2}$cosα-$\frac{\sqrt{3}}{2}$sinα),
化簡得4sinα=$\sqrt{3}$cosα,則tanα=$\frac{\sqrt{3}}{4}$,
所以tan∠PBA=$\frac{\sqrt{3}}{4}$,
故答案為:$\frac{\sqrt{3}}{4}$.

點(diǎn)評(píng) 本題考查正弦定理,兩角差的正弦函數(shù),以及商的關(guān)系的應(yīng)用,考查分析問題、解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知全集U={1,2,3,4,5},集合A={4,5},則∁UA=( 。
A.{5}B.{4,5}C.{1,2,3}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)a∈(0,5),且a≠1,則函數(shù)f(x)=loga(ax-1)在(2,+∞)上為單調(diào)函數(shù)的概率為( 。
A.$\frac{9}{10}$B.$\frac{4}{5}$C.$\frac{1}{5}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖所示,兩人分別從A村出發(fā),其中一人沿北偏東60°方向行走了1km到了B村,另一人沿北偏西30°方向行走了$\sqrt{3}$km到了C村,問B、C兩村相距多遠(yuǎn)?B村在C村的什么方向上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知定義域?yàn)镽的奇函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),當(dāng)x≠0時(shí),f′(x)+$\frac{f(x)}{x}$>0,若a=$\frac{1}{2}$f($\frac{1}{2}$),b=-2f(-2),c=ln$\frac{1}{2}$f(-ln 2),則下列關(guān)于a,b,c的大小關(guān)系正確的是(  )
A.a>b>cB.a<c<bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若拋物線y2=-2px(p>0)上有一點(diǎn)M,其橫坐標(biāo)為-9,它到焦點(diǎn)的距離為10,則點(diǎn)M的坐標(biāo)為(-9,6)或(-9,-6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}-1,x>0\\-{x^2}-2x,x≤0\end{array}\right.$
(1)求f(1)的值;
(2)畫出函數(shù)f(x)的圖象并寫出該函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知m、n、s、t∈R*,m+n=3,$\frac{m}{s}+\frac{n}{t}=1$其中m、n是常數(shù)且m<n,若s+t的最小值 是$3+2\sqrt{2}$,滿足條件的點(diǎn)(m,n)是橢圓$\frac{x^2}{4}+\frac{y^2}{16}=1$一弦的中點(diǎn),則此弦所在的直線方程為( 。
A.x-2y+3=0B.4x-2y-3=0C.x+y-3=0D.2x+y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.為了得到函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象,只需把函數(shù)y=cos(2x-$\frac{4π}{3}$)的圖象( 。
A.向左平移$\frac{π}{4}$個(gè)單位長度B.向右平移$\frac{π}{4}$個(gè)單位長度
C.向左平移$\frac{π}{2}$個(gè)單位長度D.向右平移$\frac{π}{2}$個(gè)單位長度

查看答案和解析>>

同步練習(xí)冊答案