【題目】已知函數(shù).

(1)若曲線處的切線互相平行,求的值;

(2)求的單調(diào)區(qū)間;

(3)設(shè),若對任意,均存在,使得,求的取值范圍.

【答案】(1);(2)當(dāng)時,的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,當(dāng)時,的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,當(dāng)時,的單調(diào)遞增區(qū)間是,當(dāng)時, 的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;(3).

【解析】

試題分析:(1)根據(jù)導(dǎo)數(shù)幾何意義得列等量關(guān)系,解得;(2)先研究函數(shù)零點(diǎn):;當(dāng)時,一個零點(diǎn);當(dāng)時,兩個零點(diǎn),此時再比較兩個零點(diǎn)大小,需分三種情況討論:最后列表分析導(dǎo)函數(shù)符號變化規(guī)律,確定函數(shù)單調(diào)區(qū)間;(3)任意存在性問題,一般先轉(zhuǎn)化為對應(yīng)函數(shù)最值問題:,易確定的最大值為,此時可繼續(xù)分類討論求的最大值,也可以再利用變量分離轉(zhuǎn)化為對應(yīng)函數(shù)最值的最大值.

試題解析:(1)由題意知,,即,解得.

(2).當(dāng)時,,在區(qū)間上,;在區(qū)間上,,故的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.當(dāng)時,在區(qū)間上,;在區(qū)間上,,故的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.當(dāng)時,,故的單調(diào)遞增區(qū)間是.當(dāng)時,,在區(qū)間上,;在區(qū)間上,,故的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.

(3)由題意知,在上有,由已知得,,由(2)可知,當(dāng)時, 上單調(diào)遞增,故,所以,解得,故.當(dāng)時, 上單調(diào)遞增,在上單調(diào)遞減,故,由可知,即

綜上所述,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某上市股票在30天內(nèi)每股的交易價格(元)與時間(天)組成有序數(shù)對,點(diǎn)落在圖中的兩條線段上.

該股票在30天內(nèi)的日交易量(萬股)與時間(天)的部分?jǐn)?shù)據(jù)如下表所示:

4

10

16

22

(萬股)

36

30

24

18

(1)根據(jù)提供的圖象,寫出該股票每股交易價格(元)與時間(天)所滿足的函數(shù)關(guān)系式;

(2)根據(jù)表中數(shù)據(jù),寫出日交易量(萬股)與時間(天)的一次函數(shù)關(guān)系式;

(3)用(萬元)表示該股票日交易額,寫出關(guān)于的函數(shù)關(guān)系式,并求在這30天內(nèi)第幾天日交易額最大,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:

①分類變量的隨機(jī)變量越大,說明“有關(guān)系”的可信度越大.

②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是和0.3.

③根據(jù)具有線性相關(guān)關(guān)系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為中, ,

.正確的個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖像經(jīng)過坐標(biāo)原點(diǎn),其到函數(shù)為,數(shù)列的前項(xiàng)和為,點(diǎn)均在函數(shù)的圖像上.

(I)求數(shù)列的通項(xiàng)公式;

)設(shè)是數(shù)列的前n項(xiàng)和,求使得對所有都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, .

(1)若曲線在點(diǎn)處的切線的斜率為5,求的值;

(2)若函數(shù)的最小值為,求的值;

(3)當(dāng)時, 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時,證明: 在定義域上為減函數(shù);

(Ⅱ)若.討論函數(shù)的零點(diǎn)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在區(qū)間上的函數(shù),其中常數(shù)

(1)若函數(shù)分別在區(qū)間上單調(diào),試求的取值范圍;

(2)當(dāng)時,方程有四個不相等的實(shí)根

①證明:

②是否存在實(shí)數(shù),使得函數(shù)在區(qū)間單調(diào),且的取值范圍為,若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的右上方.

(1)求圓C的方程;

(2)過點(diǎn)M(1,0)的直線與圓C交于A,B兩點(diǎn)(A在x軸上方),問在x軸正半軸上是否存在定點(diǎn)N,使得x軸平分∠ANB?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的方程為=1(a>b>0),右焦點(diǎn)為F(c,0)(c>0),方程ax2+bx-c=0的兩實(shí)根分別為x1,x2,則P(x1,x2)( )

A.必在圓x2+y2=2內(nèi)

B.必在圓x2+y2=2外

C.必在圓x2+y2=1外

D.必在圓x2+y2=1與圓x2+y2=2形成的圓環(huán)之間

查看答案和解析>>

同步練習(xí)冊答案