【題目】如圖,四棱錐P-ABCD的底面ABCD為矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(I)平面PAD與平面PAB是否垂直?并說明理由;
(II)求平面PCD與平面ABCD所成二面角的余弦值.
【答案】(I)平面 平面; (Ⅱ) cos∠PEF=.
【解析】
(1)說明,而,,即可說明平面PAD與平面PAB垂直;(2)以點A為坐標原點,AB所在的直線為y軸建立空間直角坐標系,求出,,,進而求出, ,計算平面PCD的法向量為,平面ABCD的一個法向量為,代入夾角計算公式即可。
(I)平面 平面;
證明:由題意得且
又,則
則平面,
故平面平面
(Ⅱ)以點A為坐標原點,AB所在的直線為y軸建立
空間直角坐標系如右圖示,則,,
可得,
設平面PCD的法向量為,
則, 令x=2得,
又平面ABCD的一個法向量為,
設平面PCD與平面ABCD所成二面角的大小為θ,顯然為銳角θ,
∴cosθ==.
方法二:過點P作BA的垂線交BA的延長線于點F,過點F 作EF⊥AB,
交CD的延長線于點D.
則∠PEF為平面PCD與平面ABCD所成二面角的平面角
∵PA=1, ∠PAB=120°, ∴PF=,
又EF=AD=PA= 1,∴PE=,
∴cos∠PEF=.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)﹣f′(x)是奇函數(shù)
(1)求b、c的值.
(2)求g(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)討論函數(shù)的單調(diào)性;
(2)已知,,()是函數(shù)圖像上的兩點,證明:存在,使得.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),其導函數(shù)為f′(x),若f′(x) < f (x),且 f (x+1)=f (3-x),f (2 015)=2,則不等式f (x)<2ex-1的解集為( )
A. (1,+∞) B. (e,+∞) C. (-∞,0) D. (-∞,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某實驗室一天的溫度(單位:)隨時間(單位:)的變化近似滿足函數(shù)關系:,.
(1)求實驗室這一天的最高溫度;
(2)若要求實驗室溫度不高于,則在哪段時間實驗室需要降溫?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓離心率為,點P(0,1)在短軸CD上,且.
(I)求橢圓E的方程;
(II)過點P的直線l與橢圓E交于A,B兩點.若,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在古代三國時期吳國的數(shù)學家趙爽創(chuàng)制了一幅“趙爽弦圖”,由四個全等的直角三角形圍成一個大正方形,中間空出一個小正方形(如圖陰影部分)。若直角三角形中較小的銳角為a。現(xiàn)向大正方形區(qū)城內(nèi)隨機投擲一枚飛鏢,要使飛鏢落在小正方形內(nèi)的概率為,則_____________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com