【題目】已知為橢圓的右焦點(diǎn),橢圓上任意一點(diǎn) 到點(diǎn)的距離與點(diǎn)到直線

的距離之比為

(1)求直線方程;

(2)設(shè)為橢圓的左頂點(diǎn),過(guò)點(diǎn)的直線交橢圓兩點(diǎn),直線、與直線分別相交于、兩點(diǎn),以為直徑的圓是否恒過(guò)一定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由。

【答案】1;2

【解析】

試題1設(shè)為橢圓上任意一點(diǎn),利用條件得到的方程,利用等式恒成立問(wèn)題進(jìn)行求解;2設(shè)出直線方程,聯(lián)立直線與橢圓方程,進(jìn)而得到的坐標(biāo),利用對(duì)稱性和平面向量的數(shù)量積為0研究其定點(diǎn).

試題解析:1設(shè)為橢圓上任意一點(diǎn),依題意有

。將代入,并整理得

由點(diǎn)為橢圓上任意一點(diǎn)知,方程對(duì)均成立。 ,且解得。

直線的方程為

2易知直線斜率不為0,設(shè)方程為。

,得。

設(shè),,則,。

,知方程為,點(diǎn)坐標(biāo)為。

同理,點(diǎn)坐標(biāo)為。

由對(duì)稱性,若定點(diǎn)存在,則定點(diǎn)在軸上。設(shè)在以為直徑的圓上。

。

。

,

為直徑的圓恒過(guò)軸上兩定點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且橢圓上一點(diǎn)P的坐標(biāo)為.

1)求橢圓M的方程;

2)設(shè)橢圓的右頂點(diǎn)為C,不經(jīng)過(guò)點(diǎn)C的直線l與橢圓M交于A,B兩點(diǎn),且以線段AB為直徑的圓過(guò)點(diǎn)C,

①證明:直線l過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo);

②求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的定義域?yàn)?/span>D,若存在閉區(qū)間,使得函數(shù)滿足以下兩個(gè)條件:(1[m,n]上是單調(diào)函數(shù);(2[m,n]上的值域?yàn)?/span>[2m,2n],則稱區(qū)間[m,n]的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有( )個(gè).

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù):

(I)當(dāng)時(shí),求的最小值;

(II)對(duì)于任意的都存在唯一的使得,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】201818日,中共中央國(guó)務(wù)院隆重舉行國(guó)家科學(xué)技術(shù)獎(jiǎng)勵(lì)大會(huì),在科技界引發(fā)熱烈反響,自主創(chuàng)新正成為引領(lǐng)經(jīng)濟(jì)社會(huì)發(fā)展的強(qiáng)勁動(dòng)力.某科研單位在研發(fā)新產(chǎn)品的過(guò)程中發(fā)現(xiàn)了一種新材料,由大數(shù)據(jù)測(cè)得該產(chǎn)品的性能指標(biāo)值y與這種新材料的含量x(單位:克)的關(guān)系為:當(dāng)時(shí),yx的二次函數(shù);當(dāng)時(shí),測(cè)得數(shù)據(jù)如下表(部分):

x(單位:克)

0

1

2

9

y

0

3

1)求y關(guān)于x的函數(shù)關(guān)系式;

2)當(dāng)該產(chǎn)品中的新材料含量x為何值時(shí),產(chǎn)品的性能指標(biāo)值最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)探究函數(shù)上的單調(diào)性;

(2)若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(e為自然對(duì)數(shù)的底數(shù),e=2.71828……),函數(shù)圖象關(guān)于直線對(duì)稱,函數(shù)的最小值為m.

(I)求曲線的切線方程;

(Ⅱ)求證:;

(III)求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中正確的是(

A.非零向量滿足,則的夾角為

B.,則的夾角為銳角

C.,則一定是直角三角形

D.的外接圓的圓心為O,半徑為1,若,且,則向量在向量方向上的投影的數(shù)量為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)已知正方體的棱長(zhǎng)為1,每條棱所在直線與平面α所成的角都相等,則α截此正方體所得截面面積的最大值為

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案