16.已知橢圓C中心在原點(diǎn),長軸在x軸上,F(xiàn)1、F2為其左、右兩焦點(diǎn),點(diǎn)P為橢圓C上一點(diǎn),PF2⊥F1F2,且|PF1|=$\frac{3}{2}\sqrt{2}$,|PF2|=$\frac{\sqrt{2}}{2}$.
(1)求橢圓C的方程;
(2)若傾斜角為45°的一動(dòng)直線l與橢圓C相交于A、B兩點(diǎn),求△AOB(O為坐標(biāo)原點(diǎn))面積的最大值及相應(yīng)的直線l的方程.

分析 (1)利用PF2⊥F1F2,且|PF1|=$\frac{3}{2}\sqrt{2}$,|PF2|=$\frac{\sqrt{2}}{2}$,求出a,c,可得a2-c2=1,即可求橢圓C的方程;
(2)設(shè)直線L的方程為y=x+b,與橢圓方程聯(lián)立消元得3x2+4bx+2b2-2=0;再由韋達(dá)定理及兩點(diǎn)間的距離公式求|AB|的長度,再求點(diǎn)O到直線AB的距離,從而寫出△AOB的面積S,利用基本不等式求最值及最值點(diǎn).從而得到直線l的方程.

解答 解:(1)∵PF2⊥F1F2,且|PF1|=$\frac{3}{2}\sqrt{2}$,|PF2|=$\frac{\sqrt{2}}{2}$.
∴2a=|PF1|+|PF2|=2$\sqrt{2}$,2c=$\sqrt{\frac{18}{4}-\frac{2}{4}}$=2,
∴a=$\sqrt{2}$,c=1,
∴a2-c2=1,
∴橢圓C的方程為$\frac{{x}^{2}}{2}+{y}^{2}$=1;
(2)設(shè)直線L的方程為y=x+b,
則與$\frac{{x}^{2}}{2}+{y}^{2}$=1聯(lián)立消y可得3x2+4bx+2b2-2=0,
△=(4b)2-4×3×(2b2-2)>0,
解得-$\sqrt{3}$<b<$\sqrt{3}$.
設(shè)A(x1,y1),B(x2,y2),則由韋達(dá)定理可得,x1+x2=-$\frac{4b}{3}$,x1x2=$\frac{2^{2}-2}{3}$;
故|AB|=$\sqrt{2}$|x1-x2|=$\sqrt{2}•\sqrt{(-\frac{4b}{3})^{2}-4×\frac{2^{2}-2}{3}}$=$\frac{2}{3}$$\sqrt{12-4^{2}}$;
點(diǎn)O到直線AB的距離d=$\frac{|b|}{\sqrt{2}}$
故△AOB的面積S=$\frac{1}{2}$×$\frac{2}{3}$$\sqrt{12-4^{2}}$×$\frac{|b|}{\sqrt{2}}$=$\frac{\sqrt{2}}{3}\sqrt{(3-^{2})^{2}}$≤$\frac{\sqrt{2}}{3}•\frac{3-^{2}+^{2}}{2}$=$\frac{\sqrt{2}}{2}$
(當(dāng)且僅當(dāng)3-b2=b2,即b=±$\frac{\sqrt{6}}{2}$時(shí),等號(hào)成立);
故此時(shí)直線L的方程為:y=x±$\frac{\sqrt{6}}{2}$.

點(diǎn)評(píng) 本題考查了圓錐曲線的求法及直線與圓錐曲線的交點(diǎn)及形成的圖象的面積問題,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.對(duì)某同學(xué)的6次物理測試成績(滿分100分)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如圖所示,給出關(guān)于該同學(xué)物理成績的以下說法:
①中位數(shù)為84;
②眾數(shù)為85;
③平均數(shù)為85; 
④極差為12;
其中,正確說法的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=log2(4x)•log2(2x)的定義域?yàn)閇$\frac{1}{4}$,4],
(1)若t=log2x,求t的取值范圍;
(2)求y=f(x)的最大值與最小值,并求出最值時(shí)對(duì)應(yīng)的x的值.
(3)解不等式f(x)-6>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)函數(shù)f(x)=log2(4-3x)+$\sqrt{x+2}$,則函數(shù)f(x)的定義域?yàn)閇-2,$\frac{4}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=ax+(k-1)a-x(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求k值;
(2)若f(1)>0,試判斷函數(shù)單調(diào)性,并求使不等式f(x2+x)+f(t-2x)>0恒成立的t的取值范圍;
(3)若f(1)=$\frac{3}{2}$,設(shè)g(x)=a2x+a-2x-2mf(x),g(x)在[1,+∞)上的最小值為-1,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線的方程為$\frac{{x}^{2}}{4}$-y2=1,A、B分別為其左、右頂點(diǎn),P是雙曲線右支上位于x軸上方的動(dòng)點(diǎn),則kPA+kPB的取值范圍是( 。
A.[2,+∞)B.(2,+∞)C.[$\frac{5}{2}$,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)y=sinx+cosx+2(x∈[0,$\frac{π}{2}$])的最小值是( 。
A.2-$\sqrt{2}$B.2+$\sqrt{2}$C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足sinC=2(1-cosC).
(1)求cosC;
(2)若c=2,且2sinAcosC=sinB,求b的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=f(x),且在(0,1)上,滿足f(x)=$\frac{{x}^{2}-x}{2}$,則f(-2016$\frac{1}{2}$)=( 。
A.0B.$\frac{1}{4}$C.-$\frac{1}{8}$D.$\frac{1}{8}$

查看答案和解析>>

同步練習(xí)冊(cè)答案