10.函數(shù)y=1-2sin2(x+$\frac{π}{4}$)是( 。
A.以2π為周期的偶函數(shù)B.以π為周期的偶函數(shù)
C.以2π為周期的奇函數(shù)D.以π為周期的奇函數(shù)

分析 直接由二倍角的余弦和誘導(dǎo)公式可得y=-sin2x,可判周期性和奇偶性.

解答 解:函數(shù)f(x)=1-2sin2(x+$\frac{π}{4}$)=cos2(x+$\frac{π}{4}$)=cos(2x+$\frac{π}{2}$)=-sin2x,
∴函數(shù)y=1-2sin2(x+$\frac{π}{4}$)是以π為周期的奇函數(shù).
故選:D.

點(diǎn)評(píng) 本題主要考查二倍角公式的應(yīng)用,正弦函數(shù)的周期性和奇偶性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.i為虛數(shù)單位,復(fù)數(shù)$\frac{2i}{1-i}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),f(x)=$\left\{\begin{array}{l}{\frac{1}{16}{x}^{2}(0≤x≤2)}\\{(\frac{1}{2})^{x}(x>2)}\end{array}\right.$,若關(guān)于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且僅有5個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。
A.(-$\frac{1}{4}$,0)B.($-\frac{1}{2}$,-$\frac{1}{4}$)C.($-\frac{1}{2}$,$-\frac{1}{4}$)∪($-\frac{1}{4}$,-$\frac{1}{8}$)D.(-$\frac{1}{2}$,$-\frac{1}{8}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.[x]表示不超過(guò)x的最大整數(shù),例如[1.7]=1,[-3.1]=-4,已知f(x)=x-[x](x∈R),g(x)=lg|x|,則函數(shù)h(x)=f(x)-g(x)的零點(diǎn)個(gè)數(shù)是( 。
A.15B.16C.17D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某校高三年級(jí)在學(xué)期末進(jìn)行的質(zhì)量檢測(cè)中,考生數(shù)學(xué)成績(jī)情況如下表所示:
數(shù)學(xué)成績(jī)[90,105)[105,120)[120,135)[135,150]
文科考生5740246
理科考生123xyz
已知用分層抽樣方法在不低于135分的考生中隨機(jī)抽取5名考生進(jìn)行質(zhì)量分析,其中文科考生抽取了1名.
(1)求z的值;
(2)如圖是文科不低于135分的6名學(xué)生的數(shù)學(xué)成績(jī)的莖葉圖,計(jì)算這6名考生的數(shù)學(xué)成績(jī)的方差;
(3)已知該校數(shù)學(xué)成績(jī)不低于120分的文科理科考生人數(shù)之比為1:3,不低于105分的文科理科考生人數(shù)之比為2:5,求理科數(shù)學(xué)及格人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)f(x)=lg($\frac{2}{1-x}$+a)是奇函數(shù),則a的值為( 。
A.0B.1C.-1D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)y=log3(x2-2x+4)的值域?yàn)椋ā 。?table class="qanwser">A.[1,+∞)B.[0,+∞)C.[3,+∞)D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖程序框圖的算法思路,源于我國(guó)南宋時(shí)期的數(shù)學(xué)家秦九韶在他的著作《數(shù)書(shū)九章》中提出的秦九韶算法,執(zhí)行該程序框圖,若輸入的n,an,x分別為5,1,-2,且a4=5,a3=10,a2=10,a1=5,a0=1,則輸出的v=( 。
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若曲線x2+y2+a2x+(1-a2)y-4=0關(guān)于直線y=x對(duì)稱的曲線仍是其本身,則實(shí)數(shù)a為( 。
A.$\frac{1}{2}$或$-\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$或$-\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$或$-\frac{{\sqrt{2}}}{2}$D.$-\frac{1}{2}$或$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案