14.設(shè)數(shù)列{an}是公差不為零的等差數(shù)列,且a20=22,|a11|=|a51|,求an

分析 根據(jù)題意,得出a20=22,a11+a51=2a31=0,由此列出方程組即可求出d與a1的值.

解答 解:數(shù)列{an}是公差不為零的等差數(shù)列,且a20=22,|a11|=|a51|,
∴a11=-a51,
∴a11+a51=2a31=0,
即$\left\{\begin{array}{l}{{a}_{1}+19d=22}\\{{a}_{1}+30d=0}\end{array}\right.$,
解得d=-2,a1=60;
∴an=a1+(n-1)d=60-2(n-1)=62-2n.

點(diǎn)評(píng) 本題考查了等差數(shù)列的定義與通項(xiàng)公式的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.證明:C${\;}_{n}^{0}$C${\;}_{m}^{m}$+C${\;}_{n}^{1}$C${\;}_{m}^{m-1}$+…+C${\;}_{n}^{m}$C${\;}_{m}^{0}$=C${\;}_{m+n}^{m}$(其中n≥m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)是定義域?yàn)镽,最小正周期是$\frac{3π}{2}$的函數(shù),若f(x)=$\left\{\begin{array}{l}{cosx(-\frac{π}{2}≤x≤0)}\\{sinx(0<x≤π)}\end{array}\right.$,則f(-$\frac{15π}{4}$)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知x>1,y>2,(x-1)(y-2)=4,則x+y的最小值是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若隨機(jī)變量X~B(4,P),且P(X≥1)=$\frac{80}{81}$,則P的值$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列各函數(shù)中,既是偶函數(shù),又是(0,+∞)上的減函數(shù)的是(  )
A.y=2xB.y=-x2C.y=2xD.y=log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若直線m⊥平面α,直線n⊥平面α,則m與n的位置關(guān)系是m∥n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知首項(xiàng)為3的數(shù)列{an}滿足:$\frac{({a}_{n+1}-1)({a}_{n}-1)}{{a}_{n}-{a}_{n+1}}$=3,且bn=$\frac{1}{{a}_{n}-1}$.
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{2n•bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.確定下列三角函數(shù)值的符號(hào):
(1)sin(-556°12′);
(2)cos$\frac{16}{5}$π;
(3)tan(-$\frac{17}{8}$π).

查看答案和解析>>

同步練習(xí)冊(cè)答案