5.已知(1+2x)m的展開式中的倒數(shù)第三項的二項式系數(shù)是45.
(1)求m的值;
(2)求二項式系數(shù)最大的項;
(3)求系數(shù)最大的項.

分析 (1)由(1+2x)m的展開式中的倒數(shù)第三項的二項式系數(shù)是${C}_{m}^{m-2}$=45,求得m的值.
(2)由m=10可得(1+2x)m的展開式共有11項,故第6項的二項式系數(shù)最大,再根據(jù)通項公式得出結(jié)論.
(3)根據(jù)展開式的通項公式Tr+1=${C}_{10}^{r}$•2r•xr,由$\left\{\begin{array}{l}{{C}_{10}^{r}{•2}^{r}{≥C}_{10}^{r-1}{•2}^{r-1}}\\{{C}_{10}^{r}{•2}^{r}{≥C}_{10}^{r+1}{•2}^{r+1}}\end{array}\right.$,求得r的值,可得系數(shù)最大的項.

解答 解:(1)由(1+2x)m的展開式中的倒數(shù)第三項的二項式系數(shù)是${C}_{m}^{m-2}$=45,
即${C}_{m}^{2}$=45,求得m=10.
(2)由m=10可得(1+2x)m的展開式共有11項,故第6項的二項式系數(shù)最大,為T6=${C}_{10}^{5}$•25•x5
(3)(1+2x)10的展開式的通項公式為Tr+1=${C}_{10}^{r}$•2r•xr,由$\left\{\begin{array}{l}{{C}_{10}^{r}{•2}^{r}{≥C}_{10}^{r-1}{•2}^{r-1}}\\{{C}_{10}^{r}{•2}^{r}{≥C}_{10}^{r+1}{•2}^{r+1}}\end{array}\right.$,
求得$\frac{19}{3}$≤r≤$\frac{22}{4}$,故可取r=7,即系數(shù)最大的項為第8項,為T8=${C}_{10}^{7}$•27x7

點評 本題主要考查二項式定理的應用,二項式系數(shù)的性質(zhì),二項式展開式的通項公式,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.函數(shù)$f(x)=\frac{1}{{{e^x}+1}}$值域為(0,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合A={1,2,4},B={x|x2=1},那么A∪B=( 。
A.{1}B.{1,2,4}C.{-1,1,2,4}D.{2,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知實數(shù)x,y滿足x>y,則下列關系式恒成立的是(  )
A.x3>y3B.x2>y2C.ln(x2+1)>ln(y2+1)D.$\frac{1}{{x}^{2}+1}$>$\frac{1}{{y}^{2}+1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.求下列復數(shù)的模和輻角(模保留根號;輻角為特殊角的保留π,輻角為非特殊角的用弧度制表示,并保留4位有效數(shù)字):
(1)-$\sqrt{3}$;
(2)4+2i;
(3)-2+5i;
(4)-4-3i;
(5)$\frac{1}{2}-\frac{\sqrt{3}}{2}$i;
(6)2+3i;
(7)-3+$\frac{1}{2}$i;
(9)2-3i;
(10)-3$-\frac{1}{2}$i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在平面直角坐標系中,質(zhì)點在坐標平面內(nèi)做直線運動,分別求下列位移向量的坐標.
(1)向量$\overrightarrow{a}$表示沿東北方向移動了2個單位長度;
(2)向量$\overrightarrow$表示沿西偏北60°方向移動了4個單位長度;
(3)向量$\overrightarrow{c}$表示沿東偏南30°方向移動了6個單位長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則它的外接球的體積為( 。
A.B.$\frac{8}{3}π$C.$\frac{4}{9}π$D.$\frac{4}{3}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)y=-$\frac{3}{x}$,x∈[3,4)的值域為[-1,$-\frac{3}{4}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.函數(shù)y=3x-5的定義域用區(qū)間可表示為(-∞,+∞),函數(shù)y=$\frac{3-x}{2x+4}$的定義域用區(qū)間可表示為(-∞,-2)∪(-2,+∞).

查看答案和解析>>

同步練習冊答案