9.復(fù)數(shù)z2=4+3i(i為虛數(shù)單位),則復(fù)數(shù)z的模為$\sqrt{5}$.

分析 直接利用復(fù)數(shù)的模的求解法則,化簡(jiǎn)求解即可.

解答 解:z2=|z||z|=|3+4i|=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∴|z|=$\sqrt{5}$,
故答案為:$\sqrt{5}$.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的模以及復(fù)數(shù)的定義,注意復(fù)數(shù)的模的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)f(x)=2sinxcos2$\frac{φ}{2}$+cosxsinφ-sinx(0<φ<π)在x=π處取得最小值,且滿足cos2C-cos2A=2sin($\frac{π}{3}$+C)sin($\frac{π}{3}$-C).
(1)求φ的值;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,已知a=1,b=$\sqrt{2}$,f(A)=$\frac{{\sqrt{3}}}{2}$,求角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=2sin(x+$\frac{π}{6}$).
(1)求函數(shù)f(x)的最值及相應(yīng)的x值;
(2)若方程f(x)-m=0在x∈[0,2π]上有兩個(gè)不同的零點(diǎn)x1,x2,試求x1+x2的值及相應(yīng)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,已知S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=${a}_{n}^{2}$+lna3n+1,n∈N*,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知250x=100,($\frac{1}{2}$)y=100,則$\frac{1}{x}$-$\frac{2}{y}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,⊙O與x軸的正半軸的交點(diǎn)為A,點(diǎn)C、B在⊙O上,且點(diǎn)C位于第一象限,點(diǎn)B的坐標(biāo)為($\frac{4}{5}$,-$\frac{3}{5}$),∠AOC=α(α為銳角).
(1)求⊙O的半徑,并用角α的三角函數(shù)表示C點(diǎn)的坐標(biāo);
(2)若|BC|=$\sqrt{2}$,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在數(shù)列{an}中,已知an=$\left\{\begin{array}{l}{2n-1,n為奇數(shù)}\\{3n+2,n為偶數(shù)}\end{array}\right.$.它的前n項(xiàng)和為Sn,求Sn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=sin(2x+$\frac{3π}{2}$)(x∈R),給出下面命題錯(cuò)誤的是( 。
A.函數(shù) f(x)的最小正周期為πB.函數(shù) f(x)是偶函數(shù)
C.函數(shù) f(x)的圖象關(guān)于直線x=$\frac{3π}{4}$對(duì)稱D.函數(shù) f(x)在區(qū)間$[0,\frac{π}{2}]$上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知圓C1:x2+y2-6x-6=0,圓C2:x2+y2-4y-6=0
(1)試判斷兩圓的位置關(guān)系;
(2)求公共弦所在的直線的方程;
(3)求公共弦的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案