已知數(shù)列{an}的前n項(xiàng)和Sn=3n-1,其中n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足b1=1,bn=3bn-1+an(n≥2);
(Ⅰ)證明:數(shù)列{
bn
3n-1
}為等差數(shù)列;
(Ⅱ)求數(shù)列{bn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)an=Sn-Sn-1=(3n-1)-(3n-1-1)=2•3n-1,n≥2,由此能求出an=2•3n-1.(n∈N*).
 (Ⅱ)(Ⅰ)當(dāng)n≥2時,bn=3bn-1+2•3n-1,將其變形為
bn
3n-1
=
bn-1
3n-2
+2
,由此能證明數(shù)列{
bn
3n-1
}是首項(xiàng)為
b1
30
=1,公差為2的等差數(shù)列.
(Ⅱ)由已知得bn=(2n-1)•3n-1,由此利用錯位相減法能求出數(shù)列{bn}的前n項(xiàng)和Tn
解答: (Ⅰ)解:∵數(shù)列{an}的前n項(xiàng)和Sn=3n-1,
∴an=Sn-Sn-1=(3n-1)-(3n-1-1)=2•3n-1,n≥2,
∵n=1時,a1=S1也適合上式,
an=2•3n-1.(n∈N*).
 (Ⅱ)(Ⅰ)證明:當(dāng)n≥2時,bn=3bn-1+2•3n-1,
將其變形為
bn
3n-1
=
bn-1
3n-2
+2

bn
3n-1
-
bn-1
3n-2
=2
,
∴數(shù)列{
bn
3n-1
}是首項(xiàng)為
b1
30
=1,公差為2的等差數(shù)列.
(Ⅱ)解:由(Ⅰ)得
bn
3n-1
=1+2(n-1)=2n-1,
bn=(2n-1)•3n-1,
Tn=1×30+3×3+5×32+…+(2n-1)×3n-1,
3Tn=1×3+3×32+5×33+…+(2n-1)×3n,
兩式相減,得2Tn=-1-2(3+32+…+3n-1)+(2n-1)×3n,
Tn=(n-1)•3n+1,n∈N*
點(diǎn)評:本題考查數(shù)列的通項(xiàng)公式的求法,考查等差數(shù)列的證明,考查前n項(xiàng)和的求法,解題時要認(rèn)真審題,注意錯位相減法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(x+2)=f(x)+1,且x∈[0,1]時,f(x)=4x,x∈(1,2)時,f(x)=
f(1)
x
,令g(x)=2f(x)-x-4x∈[-6,2],則函數(shù)g(x)的零點(diǎn)個數(shù)為(  )
A、9B、8C、7D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>b>0,且m=a+
1
(a-b)b

(Ⅰ)試?yán)没静坏仁角髆的最小值t;
(Ⅱ)若實(shí)數(shù)x,y,z滿足x+y+z=3且x2+4y2+z2=t,求證:|x+2y+z|≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-kx+1.
(1)若k=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0恒成立,試確定實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,O為AC與BD的交點(diǎn),AB⊥平面PAD,△PAD是正三角形,DC∥AB,DA=DC=2AB.
(1)若點(diǎn)E為棱PA上一點(diǎn),且OE∥平面PBC,求
AE
PE
的值;
(2)求證:平面PBC⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=
5
6
,公差d=-
1
6
,前a項(xiàng)和Sa=-5,求a的值及通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,函數(shù)f(x)=x3-3x2-ax+b.
(1)若f(x)在點(diǎn)(1,f(1))處的切線方程是y=2,求實(shí)數(shù)a和b的值;
(2)若f(x)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)的焦點(diǎn)F到直線x-y+1=0的距離為
2

(1)求拋物線的方程;
(2)如圖,過點(diǎn)F作兩條直線分別交拋物線于A、B和C、D,過點(diǎn)F作垂直于x軸的直線分別交AC和BD于點(diǎn)M,N.求證:|MF|=|NF|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx-αlnx-m,g(x)=
ex
ex
,其中m,α均為實(shí)數(shù).
(1)求g(x)的極值;
(2)設(shè)m=1,α<0,若對任意的x1,x2∈[3,4](x1≠x2),|f(x2)-f(x1)|<|
1
g(x2)
-
1
g(x1)
|恒成立,求a的最小值;
(3)設(shè)α=2,若對任意給定的x0∈(0,e],在區(qū)間(0,e]上總存在t1、t2(t1≠t2),使得f(t1)=f(t2)=g(x0)成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案