分析 由sinα+sinβ=$\frac{1}{2}$,令t=cosα+cosβ,平方相加可得t2=$\frac{7}{4}$+2cos(α-β)∈[0,$\frac{15}{4}$],由此求得t的范圍.
解答 解:∵sinα+sinβ=$\frac{1}{2}$,令t=cosα+cosβ,平方相加可得 1+1+2cosαcosβ+2sinαsinβ=t2+$\frac{1}{4}$,
解得t2=$\frac{7}{4}$+2cos(α-β)∈[0,$\frac{15}{4}$],故t∈[-$\frac{\sqrt{15}}{2}$,$\frac{\sqrt{15}}{2}$],
故答案為:[-$\frac{\sqrt{15}}{2}$,$\frac{\sqrt{15}}{2}$].
點評 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的余弦公式,余弦函數(shù)的值域,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1-\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}+1}{2}$ | C. | $\frac{\sqrt{3}+1}{4}$ | D. | $\frac{\sqrt{3}-1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3+\sqrt{6}}{6}$ | B. | $\frac{3-\sqrt{6}}{6}$ | C. | -$\frac{3+\sqrt{6}}{6}$ | D. | $\frac{\sqrt{6}-3}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com