2.在擲一個骰子的試驗中,事件A表示“小于5的偶數(shù)點出現(xiàn)”,事件B表示“小于5的點數(shù)出現(xiàn)”,則一次試驗中,事件A∪$\overline{B}$發(fā)生的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

分析 由已知得P(A)=$\frac{1}{3}$,P($\overline{B}$)=$\frac{1}{3}$,由此能求出一次試驗中,事件A∪$\overline{B}$發(fā)生的概率.

解答 解:∵在擲一個骰子的試驗中,事件A表示“小于5的偶數(shù)點出現(xiàn)”,事件B表示“小于5的點數(shù)出現(xiàn)”,
∴P(A)=$\frac{2}{6}$=$\frac{1}{3}$,P($\overline{B}$)=$\frac{2}{6}=\frac{1}{3}$,
∴一次試驗中,事件A∪$\overline{B}$發(fā)生的概率為:
P(A∪$\overline{B}$)=P(A)+P($\overline{B}$)=$\frac{1}{3}+\frac{1}{3}$=$\frac{2}{3}$.
故選:C.

點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意互斥事件概率加法公式的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.若“?x∈[-1,m](m>-1),|x|-1>0”是假命題,則實數(shù)m的取值范圍是( 。
A.(-1,1)B.(-1,1]C.[1,+∞)D.[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知等差數(shù)列{an}的前n項和為Sn,且a2+a4=6,a6=S3
(Ⅰ)求{an}的通項公式;
(Ⅱ)若k∈N*,且ak,a3k,S2k成等比數(shù)列,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知c>0,設命題p:$\sqrt{1-{{log}_2}c}$<1,命題q:當x∈[$\frac{1}{2},2}$],函數(shù)g(x)=cx2-x+c>0恒成立.
(1)若p為真命題,求c的取值范圍;
(2)若p或q為真命題,p且q是假命題,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.某單位在1~4 月份用電量(單位:千度)的數(shù)據(jù)如表:
月份x1234
用電量y4.5432.5
已知用電量y與月份x之間有較好的線性相關(guān)關(guān)系,其回歸方程$\widehaty=\widehatbx+$5.25,由此可預測5月份用電量(單位:千度)約為( 。
A.1.9B.1.8C.1.75D.1.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在△ABC中,角A,B,C的對邊分別為a,b,c,且C=$\frac{2π}{3}$,a=6.
(Ⅰ)若c=14,求sinA的值;
(Ⅱ)若△ABC的面積為3$\sqrt{3}$,求c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知$\frac{cosα}{1+sinα}=\sqrt{3}$,則$\frac{cosα}{sinα-1}$的值為(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)y=f(x-1)的圖象關(guān)于x=1對稱,y=f′(x)是y=f(x)的導數(shù),且當x∈(-∞,0)時,f(x)+xf′(x)<0成立,已知a=f(log52)log32,b=f(log52)log52,c=f(2),則a,b,c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設關(guān)于x的一元二次方程x2+2kx+$\frac{1}{4}$-k=0有兩個實數(shù)根,則k的取值范圍為{k|k≤-$\frac{\sqrt{2}+1}{2}$或k≥$\frac{\sqrt{2}-1}{2}$}.

查看答案和解析>>

同步練習冊答案