14.已知m≥1,當(dāng)x∈R時(shí),不等式m+cos2x<3+2sinx+$\sqrt{2m+1}$恒成立,則m的取值范圍是[1,4).

分析 分離參數(shù)得m-$\sqrt{2m+1}$<3+2sinx-cos2x=sin2x+2sinx+2=(sinx+1)2+1≤1.于是m-$\sqrt{2m+1}$<1,解出m即可.

解答 解:∵m+cos2x<3+2sinx+$\sqrt{2m+1}$,
∴m-$\sqrt{2m+1}$<3+2sinx-cos2x=sin2x+2sinx+2=(sinx+1)2+1.
∵-1≤sinx≤1.
∴1≤(sinx+1)2+1≤5.
∴m-$\sqrt{2m+1}$<1.即m-1<$\sqrt{2m+1}$.
∵m≥1,∴(m-1)2<2m+1,即
解得0<m<4.
∴1≤m<4.
故答案為:[1,4).

點(diǎn)評 本題考查了三角函數(shù)的圖象與性質(zhì),二次不等式的解法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在復(fù)平面內(nèi),復(fù)數(shù)z1與z2對應(yīng)的點(diǎn)關(guān)于虛軸對稱,且z1=-1+i,則z1z2=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將函數(shù)y=cos4x+sin2x-$\frac{7}{8}$(x∈R)圖象向右平移m(m>0)個(gè)單位長度后,所得到的圖象關(guān)于原點(diǎn)對稱,則m的最小值為(  )
A.$\frac{π}{8}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知集合{x,xy,lg(xy)}={0,|x|,y},則log8(x2+3y2)=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\overrightarrow{a}$=(0,4),$\overrightarrow$=(2,2),則下列結(jié)論中正確的是( 。
A.$\overrightarrow{a}=\overrightarrow$B.$\overrightarrow{a}⊥\overrightarrow$C.($\overrightarrow{a}-\overrightarrow$)$∥\overrightarrow{a}$D.$\overrightarrow{a}•\overrightarrow$=8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若(ax+1)(2x+$\frac{1}{x}$)5展開式中的常數(shù)項(xiàng)為-40,則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知(3+x)5=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,則a3+a4等于(  )
A.60B.30C.40D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求滿足下列條件的函數(shù)f(x)的解析式.
(1)函數(shù)f(x)滿足f($\sqrt{x}$+1)=x+2$\sqrt{x}$.
(2)函數(shù)f(x)滿足2f($\frac{1}{x}$)+f(x)=x(x≠0).
(3)若將(1)中條件“f($\sqrt{x}$+1)=x+2$\sqrt{x}$”變?yōu)椤癴(1+$\frac{1}{x}$)=$\frac{1+{x}^{2}}{{x}^{2}}$+$\frac{1}{x}$”,則f(x)的解析式是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0.b>0)的右焦點(diǎn)為F2,M是雙曲線C在第一象限上一點(diǎn),N與M關(guān)于原點(diǎn)對稱,MF2交雙曲線C于另一點(diǎn)P,NF2⊥PF2,|NF2|=|PF2|,則雙曲線C的漸近線為( 。
A.y=±2xB.y=±4xC.y=±$\frac{\sqrt{6}}{2}$xD.y=±$\frac{\sqrt{10}}{2}$x

查看答案和解析>>

同步練習(xí)冊答案