A. | y=±2x | B. | y=±4x | C. | y=±$\frac{\sqrt{6}}{2}$x | D. | y=±$\frac{\sqrt{10}}{2}$x |
分析 設(shè)|NF2|=t,可得|PF2|=t,連接MF1,NF1,可得|MF1|=t,由雙曲線的定義可得,|MF1|-|MF2|=2a,即有|MF2|=t-2a,再由勾股定理,可得t,再由|PF1|=t+2a,在直角三角形MPF1中,運用勾股定理,可得t,解方程可得a,b的關(guān)系,即可得到所求漸近線方程.
解答 解:設(shè)|NF2|=t,可得|PF2|=t,
連接MF1,NF1,可得|MF1|=t,
由雙曲線的定義可得,|MF1|-|MF2|=2a,
即有|MF2|=t-2a,
由NF2⊥PF2,可得t2+(t-2a)2=4c2=4a2+4b2,
解得t=a+$\sqrt{{a}^{2}+2^{2}}$,
連接PF1,可得|PF1|-|PF2|=2a,
即有|PF1|=t+2a,在直角三角形MPF1中,可得
(t+2a)2=t2+(2t-2a)2,
解得t=3a,
由a+$\sqrt{{a}^{2}+2^{2}}$=3a,化為2b2=3a2,
即為b=$\frac{\sqrt{6}}{2}$a,
可得漸近線方程為y=±$\frac{a}$x,
即為y=±$\frac{\sqrt{6}}{2}$x.
故選:C.
點評 本題考查雙曲線的漸近線方程的求法,注意運用雙曲線的定義和勾股定理,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a=0 | B. | a=1 | C. | a=-1 | D. | a∈R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | 4 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,$\sqrt{2}$) | B. | ($\sqrt{2}$,$\sqrt{3}$) | C. | ($\sqrt{3},2$) | D. | (2,$\sqrt{5}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1006 | B. | 1007 | C. | 1008 | D. | 1009 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,4] | B. | (0,4] | C. | (-4,0] | D. | [4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{10}$ | B. | 10 | C. | 2$\sqrt{10}$ | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com