【題目】如圖,在四棱錐中,底面為菱形,,側棱底面,,點為的中點,作,交于點.
(1)求證:平面;
(2)求證:;
(3)求二面角的余弦值.
【答案】(1)見解析(2)見解析 (3)
【解析】
(1)連接交于,連接,根據(jù)中位線定理證明,即可證得平面.
(2)先證平面.又∵平面,則.
(3)建立空間直角坐標系,列出各點的坐標表示,求出平面的法向量為,又因平面,所以為平面的一條法向量,利用余弦公式求解即可得出二面角的余弦值.
解:(1)證明:連接交于,連接.
因為,分別為,的中點,所以為的中位線
∴,又平面,平面,∴平面
(2)在中,,點為的中點,
∴,則平面.
又∵平面,則.
(3)取中點,連接.
依題意可得為等邊三角形,∴,
又因為底面,,平面
則,
建立以為坐標原點,如圖所示坐標系,則有:
,,,,,,
,,設平面的法向量為,
則,∴
∵平面,所以為平面的一條法向量,且
∴
科目:高中數(shù)學 來源: 題型:
【題目】某地舉行水上運動會,如圖,岸邊有兩點,,小船從點以千米/小時的速度沿方向勻速直線行駛,同一時刻運動員出發(fā),經(jīng)過小時與小船相遇.(水流速度忽略不計)
(1)若,,運動員從處出發(fā)游泳勻速直線追趕,為保證在1小時內(含1小時)能與小船相遇,試求運動員游泳速度的最小值;
(2)若運動員先從處沿射線方向在岸邊跑步勻速行進小時后,再游泳勻速直線追趕小船.已知運動員在岸邊跑步的速度為4千米小時,在水中游泳的速度為2千米小時,試求小船在能與運動員相遇的條件下的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)的定義域為,如果存在非零常數(shù),對于任意,都有,則稱函數(shù)是“似周期函數(shù)”,非零常數(shù)為函數(shù)的“似周期”.現(xiàn)有下面四個關于“似周期函數(shù)”的命題:
①如果“似周期函數(shù)”的“似周期”為,那么它是周期為2的周期函數(shù);
②函數(shù)是“似周期函數(shù)”;
③如果函數(shù)是“似周期函數(shù)”,那么“或”.
以上正確結論的個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,,左頂點為,離心率為,點是橢圓上的動點,的面積的最大值為.
(1)求橢圓的方程;
(2)設經(jīng)過點的直線與橢圓相交于不同的兩點,,線段的中垂線為.若直線與直線相交于點,與直線相交于點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務,每次維修服務費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數(shù)超過購機時購買的維修服務次數(shù),則每維修一次需支付維修服務費用500元,無需支付小費.現(xiàn)需決策在購買機器時應同時一次性購買幾次維修服務,為此搜集并整理了100臺這種機器在三年使用期內的維修次數(shù),得下面統(tǒng)計表:
維修次數(shù) | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
記表示1臺機器在三年使用期內的維修次數(shù),表示1臺機器在維修上所需的費用(單位:元),表示購機的同時購買的維修服務次數(shù).
(1)若,求與的函數(shù)解析式;
(2)若要求“維修次數(shù)不大于”的頻率不小于0.8,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓:的離心率為,點分別為橢圓與坐標軸的交點,且.過軸上定點的直線與橢圓交于,兩點,點為線段的中點.
(1)求橢圓的方程;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓:的左、右焦點分別為,,下頂點為,橢圓的離心率是,的面積是.
(1)求橢圓的標準方程.
(2)直線與橢圓交于,兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com