【題目】如圖,在四棱錐中,底面為菱形,,側棱底面,,點的中點,作,交于點.

1)求證:平面

2)求證:;

3)求二面角的余弦值.

【答案】1)見解析(2)見解析 3

【解析】

1)連接,連接,根據(jù)中位線定理證明,即可證得平面.

2)先證平面.又∵平面,則.

3)建立空間直角坐標系,列出各點的坐標表示,求出平面的法向量為,又因平面,所以為平面的一條法向量,利用余弦公式求解即可得出二面角的余弦值.

解:(1)證明:連接,連接.

因為,分別為,的中點,所以的中位線

,又平面,平面,∴平面

2)在中,,點的中點,

,則平面.

又∵平面,則.

3)取中點,連接.

依題意可得為等邊三角形,∴,

又因為底面,,平面

,

建立以為坐標原點,如圖所示坐標系,則有:

,,,,,,

,,設平面的法向量為,

,∴

平面,所以為平面的一條法向量,且

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某地舉行水上運動會,如圖,岸邊有兩點,,小船從點以千米/小時的速度沿方向勻速直線行駛,同一時刻運動員出發(fā),經(jīng)過小時與小船相遇.(水流速度忽略不計)

1)若,,運動員從處出發(fā)游泳勻速直線追趕,為保證在1小時內(含1小時)能與小船相遇,試求運動員游泳速度的最小值;

2)若運動員先從處沿射線方向在岸邊跑步勻速行進小時后,再游泳勻速直線追趕小船.已知運動員在岸邊跑步的速度為4千米小時,在水中游泳的速度為2千米小時,試求小船在能與運動員相遇的條件下的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)的定義域為,如果存在非零常數(shù),對于任意,都有,則稱函數(shù)似周期函數(shù),非零常數(shù)為函數(shù)似周期.現(xiàn)有下面四個關于似周期函數(shù)的命題:

①如果似周期函數(shù)似周期,那么它是周期為2的周期函數(shù);

②函數(shù)似周期函數(shù)

③如果函數(shù)似周期函數(shù),那么

以上正確結論的個數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,,左頂點為,離心率為,點是橢圓上的動點,的面積的最大值為.

(1)求橢圓的方程;

(2)設經(jīng)過點的直線與橢圓相交于不同的兩點,線段的中垂線為.若直線與直線相交于點,與直線相交于點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務,每次維修服務費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數(shù)超過購機時購買的維修服務次數(shù),則每維修一次需支付維修服務費用500元,無需支付小費.現(xiàn)需決策在購買機器時應同時一次性購買幾次維修服務,為此搜集并整理了100臺這種機器在三年使用期內的維修次數(shù),得下面統(tǒng)計表:

維修次數(shù)

8

9

10

11

12

頻數(shù)

10

20

30

30

10

表示1臺機器在三年使用期內的維修次數(shù),表示1臺機器在維修上所需的費用(單位:元),表示購機的同時購買的維修服務次數(shù).

1)若,求的函數(shù)解析式;

2)若要求維修次數(shù)不大于的頻率不小于0.8,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓的離心率為,點分別為橢圓與坐標軸的交點,且.軸上定點的直線與橢圓交于,兩點,點為線段的中點.

1)求橢圓的方程;

2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的左、右焦點分別為,下頂點為,橢圓的離心率是,的面積是.

1)求橢圓的標準方程.

2)直線與橢圓交于,兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處的切線方程為.

(1)求實數(shù)的值;

(2)若有兩個極值點,求的取值范圍并證明.

查看答案和解析>>

同步練習冊答案