15.不查表求值cos20°sin10°+sin20°sin80°.

分析 將sin10°換成cos80°,使用余弦的差角公式轉(zhuǎn)化成特殊角的三角函數(shù).

解答 解:cos20°sin10°+sin20°sin80°=cos20°cos80°+sin20°sin80°=cos60°=$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡(jiǎn)求值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.用計(jì)算器求在0°~360°范圍內(nèi)的角x(精確到0.01°):
(1)cosx=0.12;(2)sinx=0.45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知數(shù)列{an}的通項(xiàng)公式是an=$\frac{n+1}{2n+3}$,則這個(gè)數(shù)列的第5項(xiàng)是$\frac{6}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.將函數(shù)y=sin(2x+$\frac{π}{4}$)的圖象向左平移$\frac{π}{4}$個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,則所得圖象的函數(shù)解析式是( 。
A.y=1+cos(2x+$\frac{π}{4}$)B.y=1-cos(2x+$\frac{π}{4}$)C.y=2-sin(2x-$\frac{π}{4}$)D.y=cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若sin(θ-$\frac{π}{6}$)=$\frac{3}{5}$,$\frac{π}{6}$<θ<$\frac{π}{2}$,則sinθ=$\frac{4+3\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),點(diǎn)A,F(xiàn)分別是橢圓C的左頂點(diǎn)和左焦點(diǎn),點(diǎn)P是⊙O:x2+y2=b2上的動(dòng)點(diǎn),若$\frac{|AP|}{|FP|}$是常數(shù),則橢圓C的離心率為$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=ex-ax-1(a為常數(shù))在x=ln2處取得極值.
(1)求實(shí)數(shù)a的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)x>0時(shí),ex>x2+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=ex-kx,x∈R.
(1)若k=e,求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若k>0,且對(duì)任意x∈R,f(|x|)的圖象在x軸上方,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.“中國(guó)式過(guò)馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對(duì)“中國(guó)式過(guò)馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問(wèn)卷調(diào)查,得到了如下列聯(lián)表:
男性女性合計(jì)
反感10  
不反感 8 
合計(jì)  30
已知在這30人中隨機(jī)抽取1人抽到反感“中國(guó)式過(guò)馬路”的路人的概率是$\frac{7}{15}$.
(I)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(在答題卡上直接填寫(xiě)結(jié)果,不需要寫(xiě)求解過(guò)程),并據(jù)此資料分析反感“中國(guó)式過(guò)馬路”與性別是否有關(guān)?(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(a+c)(c+d)(b+d)}$)
(Ⅱ)若從這30人中的女性路人中隨機(jī)抽取2人參加一活動(dòng),記反感“中國(guó)式過(guò)馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案