9.不等式x2+ax+b<0的解集是(2,3),則a+b=( 。
A.-5B.1C.-2D.2

分析 直接用一元二次不等式的解法,開口向上,大于0,去兩根之外,小于0,取兩根之間.以及根與系數(shù)的關(guān)系(韋達(dá)定理:${x}_{1}+{x}_{2}=-\frac{a},{x}_{1}•{x}_{2}=\frac{c}{a}$),即可得到答案.

解答 解:∵x2+ax+b<0,開口向上,
解集是(2,3),∴x1=2,x2=3
由韋達(dá)定理可得,
2+3=-a,2×3=b
解得a=-5,b=6.
∴a+b=1
故選B.

點(diǎn)評 本題主要考查了一元二次不等式的解法,以及根與系數(shù)的關(guān)系,同時(shí)考查了分析求解的能力和計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若復(fù)數(shù)z滿足|z|=2,則|1+$\sqrt{3}$i+z|的取值范圍是( 。
A.[1,3]B.[1,4]C.[0,3]D.[0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列命題錯(cuò)誤的是( 。
A.命題“若x2+y2=0,則x=y=0”的逆否命題為“若x,y中至少有一個(gè)不為0,則x2+y2≠0”
B.若命題p:?x0∈R,x02-x0+1≤0,則¬P:?x∈R,x2-x+1>0
C.命題 P:若x=2且y=3,則x+y-5=0,命題P的否命題為假
D.設(shè)集合$A=\left\{{\left.x\right|\frac{x-1}{x+1}<0}\right\}$,B={x||x-1|<a},則“a=1”是“A∩B≠∅”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.雙曲線$\frac{y^2}{9}-\frac{x^2}{7}$=1的焦點(diǎn)坐標(biāo)為(0,4),(0,-4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)y=|x+3|,向量程序框表示的是給出x值,求所對應(yīng)的函數(shù)值的算法,請將該程序框圖補(bǔ)充完整,其中①處應(yīng)填x≥-3;②處應(yīng)填y=-x-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)向量$\overrightarrow a$,$\overrightarrow b$滿足|${\overrightarrow a$+$\overrightarrow b}$|=$\sqrt{10}$,|${\overrightarrow a$-$\overrightarrow b}$|=$\sqrt{6}$,則$\overrightarrow a$•$\overrightarrow b$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.4名男歌手和2名女歌手聯(lián)合舉行一場音樂會(huì),出場順序要求兩名女歌手不相鄰,共有出場方案的種數(shù)是(  )
A.$A_4^4A_5^2$B.$A_4^4A_3^2$C.$A_4^4A_2^2$D.$A_4^4A_4^1A_3^1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在區(qū)間(0,1)內(nèi)任取兩個(gè)數(shù),則這兩個(gè)數(shù)的和小于$\frac{6}{5}$的概率為( 。
A.$\frac{18}{25}$B.$\frac{17}{25}$C.$\frac{16}{25}$D.$\frac{12}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)f(x)=ax2+bx,且-1≤f(-1)≤2,2≤f(1)≤4.求f(-2)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案