函數(shù)f(x)=lnx-2x+5的單調(diào)遞增區(qū)間為
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:先求出函數(shù)的導(dǎo)數(shù),令導(dǎo)函數(shù)大于0,解不等式求出即可.
解答: 解:∵f′(x)=
1
x
-2,x>0,
令f′(x)>0,解得:0<x<
1
2

故答案為:(0,
1
2
).
點(diǎn)評:本題考察了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列函數(shù):
①f(x)=x 
1
2
;
②f(x)=x2;
③f(x)=2x
④f(x)=log2x.
則滿足關(guān)系式f′(2)>f(3)-f(2)>f′(3)的函數(shù)的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將正奇數(shù)按如圖所示的規(guī)律排列,則第21行從左向右的第5個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=xlnx-ax,g(x)=-x2-2,對一切x∈(0,+∞),f(x)≥g(x)恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x3-x2-x的單調(diào)遞增區(qū)間為
 
,遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),過F1且垂直于x軸的直線交橢圓C于A、B兩點(diǎn),若△ABF2為直角三角形,則橢圓C的離心率e為( 。
A、
2
-1
B、
3
-1
C、
2
2
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F1、F2是橢圓
x2
2
+
y2
1
=1的左、右焦點(diǎn),過F2作傾斜角為
π
4
的直線交橢圓于A、B兩點(diǎn),則S F1AB=( 。
A、
2
3
B、
2
2
3
C、
4
3
D、
4
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=k-
sin|x|
x
(k>0)有且僅有兩個不同的零點(diǎn)θ,φ(θ>φ),則以下有關(guān)兩零點(diǎn)關(guān)系的結(jié)論正確的是( 。
A、sinφ=φcosθ
B、sinφ=-φcosθ
C、sinθ=θcosφ
D、sinθ=-θcosφ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正三角形ABC的邊長為2,將它沿高AD翻折,使點(diǎn)B與點(diǎn)C間的距離為
2
,此時四面體ABCD的外接球的表面積為(  )
A、6π
B、
15π
4
C、5π
D、
13π
3

查看答案和解析>>

同步練習(xí)冊答案