13.函數(shù)f(x)=$\frac{1}{\sqrt{a{x}^{2}-4ax+3}}$的值域為(0,+∞)則a的取值范圍是(  )
A.(0,$\frac{3}{4}$)B.[0,$\frac{3}{4}$)C.[$\frac{3}{4}$,+∞)D.[$\frac{3}{4}$,+∞)∪(-∞,0]

分析 分類討論以確定函數(shù)的值域,從而可得$\left\{\begin{array}{l}{a>0}\\{(-4a)^{2}-4×3×a≥0}\end{array}\right.$,從而解得.

解答 解:當(dāng)a=0時,f(x)=$\frac{\sqrt{3}}{3}$,故不符合題意;
當(dāng)a≠0時,∵函數(shù)f(x)=$\frac{1}{\sqrt{a{x}^{2}-4ax+3}}$的值域為(0,+∞),
∴$\left\{\begin{array}{l}{a>0}\\{(-4a)^{2}-4×3×a≥0}\end{array}\right.$,
解得,a≥$\frac{3}{4}$;
故選:C.

點評 本題考查了函數(shù)的值域的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0)中,a,b,c均為整數(shù),且f(0),f(1)均為奇數(shù).求證:f(x)=0無整數(shù)根.  
(2)已知a,b,c∈R+,a+b+c=1,求證:$\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$≥9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若不等式$\frac{1}{x}$<2和|x|>$\frac{1}{3}$同時成立,則x的取值范圍是( 。
A.-$\frac{1}{2}$<x<$\frac{1}{3}$B.x>$\frac{1}{2}$或x<-$\frac{1}{3}$C.x>$\frac{1}{2}$或x<$\frac{1}{3}$D.x>$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知下列各組命題,其中p是q的充分必要條件的是( 。
A.p:m≤-2或m≥6;q:y=x2+mx+m+3有兩個不同的零點
B.p:$\frac{f(-x)}{f(x)}$=1;q:y=f(x)是偶函數(shù)
C.p:cos α=cos β;q:tan α=tan β
D.p:A∩B=A;q:A⊆U,B⊆U,∁UB⊆∁UA

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.以下命題正確的個數(shù)是(  )
①命題“?x∈R,sinx>0”的否定是“?x∈R,sinx≤0”.
②命題“若x2+x-12=0,則x=4”的逆否命題為“若x≠4,則x2+x-12≠0”.
③若p∧q為假命題,則p、q均為假命題.
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)$f(x)=cos(2x-\frac{4π}{3})+2{cos^2}x$
(1)把函數(shù)f(x)的圖象向右平移$\frac{π}{2}$個單位,再向下平移$\frac{3}{2}$個單位得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間$[{-\frac{π}{4},\frac{π}{6}}]$上的最小值,并求出此時x的值;
(2)已知△ABC中,角A,B,C的對邊分別為a,b,c.若$f(B+C)=\frac{3}{2},b+c=2$.求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某高校共有學(xué)生15 000人,其中男生10 500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).
(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運動時間的頻率分布直方圖(如圖示),在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有95%的把握認為“該校學(xué)生的每周平均體育運動時間與性別有關(guān)”.
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知-個三棱錐與一個四棱錐,它們的所有棱為1,將三棱錐與四棱錐的側(cè)面粘在一起使之完全重合,則所得到的多面體是( 。
A.五面體B.六面體C.七面體D.八面體

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué) (男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進行解答.選題情況如表:(單位:人)
幾何題代數(shù)題總計
男同學(xué)22830
女同學(xué)81220
總計302050
(Ⅰ) 能否據(jù)此判斷有97.5%的把握認為視覺和空間能力與性別有關(guān)?
(Ⅱ) 經(jīng)過多次測試后,甲每次解答一道幾何題所用的時間在5-7分鐘,乙每次解答一道幾何題所用的時間在6-8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
附表及公式附表及公式
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步練習(xí)冊答案