分析 (1)先通過條件得到a,b同奇偶,然后分別討論若a,b同為偶數(shù)與同為奇數(shù)兩種情形,然后根據(jù)數(shù)值的奇偶進(jìn)行判定方程有無整數(shù)根;
(2)a,b,c∈R+,a+b+c=1,即有$\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$=(a+b+c)($\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$),運(yùn)用三元基本不等式即可得證.
解答 證明:(1)f(0)=c為奇數(shù),
f(1)=a+b+c為奇數(shù),則a+b為偶數(shù),
所以a,b同奇偶,
假設(shè)整數(shù)根t,所以f(t)=0 即at2+bt+c=0,
若a,b同為偶數(shù),則at2+bt為偶數(shù),
所以at2+bt+c為奇數(shù)可得at2+bt+c≠0
與at2+bt+c=0矛盾;
若a,b同為奇數(shù),若t為偶數(shù)則at2+bt為偶數(shù),
若t為奇數(shù)則at2+bt為偶數(shù),
所以 at2+bt+c為奇數(shù) 可得at2+bt+c≠0與at2+bt+c=0矛盾.
綜上所述方程f(x)=0無整數(shù)根;
(2)a,b,c∈R+,a+b+c=1,
即有$\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$=(a+b+c)($\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$)
≥3$\root{3}{abc}$•3$\root{3}{\frac{1}{abc}}$=9,
當(dāng)且僅當(dāng)a=b=c,取得等號(hào).
即有$\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$≥9.
點(diǎn)評(píng) 本題主要考查了函數(shù)與方程的綜合運(yùn)用,以及分類討論的數(shù)學(xué)思想,同時(shí)考查不等式的證明,注意運(yùn)用基本不等式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$+$\frac{i}{2}$ | B. | 1+$\frac{i}{2}$ | C. | -$\frac{1}{2}$-$\frac{i}{2}$ | D. | 1-$\frac{i}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{3}{4}$) | B. | [0,$\frac{3}{4}$) | C. | [$\frac{3}{4}$,+∞) | D. | [$\frac{3}{4}$,+∞)∪(-∞,0] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com