分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)由已知得f(x)的定義域?yàn)椋?,1)∪(1,+∞),f′(x)=-a+$\frac{lnx-1}{{(lnx)}^{2}}$在(1,+∞)上恒成立,由此利用導(dǎo)數(shù)性質(zhì)能求出a的最大值;
(Ⅲ)通過分析,問題等價(jià)于:“當(dāng)x∈[e,e2]時(shí),有g(shù)max(x)≤$\frac{1}{4}$”,結(jié)合(Ⅱ)及g′(x),分①a≥$\frac{1}{4}$、②a≤0、③0<a<$\frac{1}{4}$三種情況討論即可.
解答 解:(Ⅰ)a=1時(shí),f(x))=x-xlnx,f′(x)=-lnx,
令f′(x)>0,解得:0<x<1,令f′(x)<0,解得:x>1,
∴f(x)在(0,1)遞增,在(1,+∞)遞減;
(Ⅱ)由已知得g(x)=$\frac{x}{lnx}$-ax,函數(shù)的定義域?yàn)椋?,1)∪(1,+∞),
∵g(x)在(1,+∞)上為減函數(shù),
∴g′(x)=-a+$\frac{lnx-1}{{(lnx)}^{2}}$≤0在(1,+∞)上恒成立,
-a≤$\frac{1}{{(lnx)}^{2}}$-$\frac{1}{lnx}$=($\frac{1}{lnx}$-$\frac{1}{2}$)2-$\frac{1}{4}$,
令h(x)=($\frac{1}{lnx}$-$\frac{1}{2}$)2-$\frac{1}{4}$,
故當(dāng)$\frac{1}{lnx}$=$\frac{1}{2}$,即x=e2時(shí),
h(x)的最小值為-$\frac{1}{4}$,∴-a≤-$\frac{1}{4}$,
即a≥$\frac{1}{4}$;最小值為$\frac{1}{4}$;
(Ⅲ)由(Ⅱ)得:g′(x)=-a+$\frac{lnx-1}{{(lnx)}^{2}}$,(x∈[e,e2]),
g″(x)=$\frac{2}{{(lnx)}^{3}}$>0,∴g′(x)max=g′(e2)=$\frac{1}{4}$,
故在區(qū)間[e,e2]上,若存在x0,使得g(x0)≤g′(x)max+a成立,
問題等價(jià)于:“當(dāng)x∈[e,e2]時(shí),有g(shù)max(x)≤$\frac{1}{4}$”,
由(Ⅱ)知 $\frac{lnx-1}{{(lnx)}^{2}}$∈[0,$\frac{1}{4}$],
①當(dāng)a≥$\frac{1}{4}$時(shí),g′(x)≤0在[e,e2]上恒成立,因此f(x)在[e,e2]上為減函數(shù),
則fmax(x)=g(e)=e-ae≤$\frac{1}{4}$,故a≥1-$\frac{1}{4e}$;
②當(dāng)a≤0時(shí),g′(x)≥0在[e,e2]上恒成立,因此g(x)在[e,e2]上為增函數(shù),
則gmax(x)=g(e2)=-ae2+$\frac{{e}^{2}}{2}$≤$\frac{1}{4}$,解得:a≥$\frac{1}{2}$-$\frac{1}{{4e}^{2}}$,不合題意;
③當(dāng)0<a<$\frac{1}{4}$時(shí),由g′(x)在[e,e2]上為增函數(shù),
故g′(x) 的值域?yàn)閇g′(e),g′(e2)],即[-a,$\frac{1}{4}$-a].
由g′(x)的單調(diào)性和值域知,存在唯一x0∈(e,e2),使g′(x0)=0,且滿足:
當(dāng)x∈(e,x0),時(shí),g′(x)<0,此時(shí)g(x)為減函數(shù);
當(dāng)x∈(x0,e2),時(shí),g′(x)>0,此時(shí)g(x)為增函數(shù);
所以,gmax(x)=max{g(e)或g(e2)}與0<a<$\frac{1}{4}$矛盾,不合題意.
綜上所述,得a≥$\frac{1}{2}$-$\frac{1}{{4e}^{2}}$.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想、轉(zhuǎn)化思想,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{5}{2}$ | C. | 2 | D. | $\frac{3}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com