【題目】已知,設(shè)命題,使得不等式能成立;命題不等式對(duì)恒成立,若為假,為真,求的取值范圍.

【答案】

【解析】

試題分析:若,使得不等式能成立,可以轉(zhuǎn)化為,使得不等式能成立,因此只需滿(mǎn)足即可,而函數(shù)在區(qū)間上單調(diào)遞增,所以,因此;若不等式對(duì)恒成立,分類(lèi)討論,當(dāng)時(shí),不等式為恒成立,符合題意,當(dāng)時(shí),應(yīng)滿(mǎn)足,解得,所以,若為假,為真,則真或假,由上面分析可知,當(dāng)假時(shí),,當(dāng)真時(shí),,本題以一則考查命題的真假,另則考查不等式能成立、恒成立問(wèn)題.考查學(xué)生的化歸轉(zhuǎn)化能力.

試題解析:命題,能成立

………… 2分

為增函數(shù),即

命題當(dāng)時(shí),適合題意

當(dāng)時(shí),

所以當(dāng)命題為真時(shí),

為假,為真,則一真一假

如果p真且q假,則;

如果p假且q真,則.

所以的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),解關(guān)于的不等式;

(2)若關(guān)于的不等式的解集是,求實(shí)數(shù)、的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某小區(qū)隨機(jī)抽取40個(gè)家庭,收集了這40個(gè)家庭去年的月均用水量(單位:噸)的數(shù)據(jù),整理得到頻數(shù)分布表和頻率分布直方圖.

(1)求頻率分布直方圖中的值;

(2)從該小區(qū)隨機(jī)選取一個(gè)家庭,試估計(jì)這個(gè)家庭去年的月均用水量不低于6噸的概率;

(3)在這40個(gè)家庭中,用分層抽樣的方法從月均用水量不低于6噸的家庭里抽取一個(gè)容量為7的樣本,將該樣本看成一個(gè)總體,從中任意選取2個(gè)家庭,求其中恰有一個(gè)家庭的月均用水量不低于8噸的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),,命題,命題

當(dāng)時(shí),試判斷命題是命題的什么條件;

的取值范圍,使命題是命題的一個(gè)必要但不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,,過(guò)橢圓的右頂點(diǎn)和上頂點(diǎn)的直線(xiàn)與圓相切.

(1)求橢圓的方程;

(2)設(shè)是橢圓的上頂點(diǎn), 過(guò)點(diǎn)分別作直線(xiàn)交橢圓兩點(diǎn), 設(shè)這兩條直線(xiàn)的斜率分別為,且,證明: 直線(xiàn) 過(guò)定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿(mǎn)足a1=1,an+1=,設(shè)bn=,n∈N*。

(1)證明{bn}是等比數(shù)列(指出首項(xiàng)和公比);

(2)求數(shù)列{log2bn}的前n項(xiàng)和Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知以點(diǎn)為圓心的圓過(guò)原點(diǎn)O與x軸另一個(gè)交點(diǎn)為M,與y軸另一個(gè)交點(diǎn)為N,

1求證:△MON的面積為定值;

2直線(xiàn)4x+ y-4=0與圓C交于點(diǎn)AB,若,求圓C的方程

3直線(xiàn)l:x+ y -5=0和圓C交于點(diǎn)A,B兩點(diǎn),且AB=,求圓心C的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為數(shù)列的前項(xiàng)和,對(duì)任意的,都有為正常數(shù)).

(1)求證:數(shù)列是等比數(shù)列;

(2)數(shù)列滿(mǎn)足,,求數(shù)列的通項(xiàng)公式;

(3)在滿(mǎn)足(2)的條件下,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿(mǎn)分12分如圖,點(diǎn)A,B是單位圓上的兩點(diǎn),A,B兩點(diǎn)分別在第一、二象限,點(diǎn)C是圓與x軸正半軸的交點(diǎn),△AOB是正三角形,若點(diǎn)A的坐標(biāo)為,,記∠COA=α

的值;

求cos∠COB的值

查看答案和解析>>

同步練習(xí)冊(cè)答案