A. | 2$\sqrt{3}+1$ | B. | $\sqrt{3}$ | C. | $\sqrt{3}+1$ | D. | 2$\sqrt{3}$ |
分析 根據(jù)雙曲線的對稱性可推斷出三角形的頂點在y軸,根據(jù)正三角形的性質(zhì)求得頂點的坐標,進而求得正三角形的邊與雙曲線的交點,代入雙曲線方程與b2=c2-a2聯(lián)立整理求得e.
解答 解:雙曲線恰好平分正三角形的另兩邊,
頂點就在Y軸上坐標是(0,$\sqrt{3}$c)或(0,-$\sqrt{3}$c),
那么正三角形的邊與雙曲線的交點就是邊的中點($\frac{c}{2}$,$\frac{\sqrt{3}•c}{2}$c)
在雙曲線上代入方程$\frac{{c}^{2}}{{4a}^{2}}$-$\frac{{3c}^{2}}{{4b}^{2}}$=1
聯(lián)立 b2=c2-a2求得e4-8e2+4=0
求得e=$\sqrt{3}$+1,
故選:C.
點評 本題主要考查了雙曲線的簡單性質(zhì).考查了學生對雙曲線基礎(chǔ)知識的綜合把握,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | 4 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com