8.已知函數(shù)f(x)=|x-3|-2|x+a|
(Ⅰ)當(dāng)a=3時(shí),求不等式f(x)>2的解集;
(Ⅱ)若f(x)+x+1≤0的解集為A,且[-2,-1]⊆A,求a的取值范圍.

分析 (Ⅰ)將a=3代入,通過討論x的范圍,得到關(guān)于x的不等式,解出即可;(Ⅱ)問題轉(zhuǎn)化為|x+a|≥2在x∈[-2,-1]恒成立,分離a,求出其范圍即可.

解答 解(Ⅰ)a=3時(shí),f(x)>2
?|x-3|-2|x+3|>2
?$\left\{\begin{array}{l}x≤-3\\ x+9>2\end{array}\right.$或 $\left\{\begin{array}{l}-3<x<3\\-3x-3>2\end{array}\right.$或 $\left\{\begin{array}{l}x≥3\\-x-9>2\end{array}\right.$
即$-7<x<-\frac{5}{3}$,
∴不等式f(x)>2的解集為:$\left\{{x|-7<x<-\frac{5}{3}}\right\}$.…(5分)
(Ⅱ)[-2,-1]⊆A
?|x-3|-2|x+a|+x+1≤0在x∈[-2,-1]恒成立
?(3-x)-2|x+a|+x+1≤0在x∈[-2,-1]恒成立
?|x+a|≥2在x∈[-2,-1]恒成立
?a≥2-x或a≤-2-x在x∈[-2,-1]恒成立
?a≥4或a≤-1.…(10分)

點(diǎn)評(píng) 本題考查了解絕對(duì)值不等式問題,考查分類討論思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)f(x)=$\frac{1}{cosx}$+$\frac{a}{sinx}$,若對(duì)任意x∈(0,$\frac{π}{2}$),不等式f(x)≥8恒成立,則實(shí)數(shù)a的取值范圍是[3$\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=(-$\sqrt{3}$,-1),則<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.向量$\overrightarrow{a}$、$\overrightarrow$的坐標(biāo)分別是(2,-3),(5,-4),求$\overrightarrow{a}$•$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)左右焦點(diǎn)分別為F1、F2,以F1F2為邊作正三角形,與雙曲線在第一二象限的交點(diǎn)恰是所在邊中點(diǎn),則雙曲線的離心率為(  )
A.2$\sqrt{3}+1$B.$\sqrt{3}$C.$\sqrt{3}+1$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.命題:“?x0∈R,x02+1>0或x0>sinx0”的否定是( 。
A.?x∈R,x2+1≤0且x≤sinxB.?x∈R,x2+1≤0或x≤sinx
C.?x0∈R,x${\;}_{0}^{2}$+1≤0且x0>sinx0D.?x0∈R,x${\;}_{0}^{2}$+1≤0或x0≤sinx0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=mx+$\frac{4}{x}$,且f(4)=3.
(1)求m的值;
(2)判斷f(x)的奇偶性;
(3)判斷f(x)在(0,+∞)上的單調(diào)性,并應(yīng)用單調(diào)性的定義給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某空間幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{8}{9}$B.$\frac{8}{3}$C.3D.$\frac{17}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=x2-2ax+5(a>1),g(x)=log3x.若函數(shù)f(x)的定義域與值域均為[1,a],且對(duì)于任意的x1,x2∈[1,a+1],$|{f({x_1})-g({x_2})}|≤{4^t}+{2^t}$恒成立,則滿足條件的實(shí)數(shù)t的取值范圍是( 。
A.[-2,8]B.[0,8]C.[0,+∞)D.[0,8)

查看答案和解析>>

同步練習(xí)冊(cè)答案