14.不等式($\frac{1}{2}$)${\;}^{2{x}^{2}+5x-5}$>2${\;}^{7-8x-{x}^{2}}$的解是(-∞,1)∪(2,+∞).

分析 利用指數(shù)式的單調(diào)性化指數(shù)不等式為一元二次不等式,求解一元二次不等式得答案.

解答 解:由($\frac{1}{2}$)${\;}^{2{x}^{2}+5x-5}$>2${\;}^{7-8x-{x}^{2}}$,得:
${2}^{-2{x}^{2}-5x+5}<{2}^{7-8x-{x}^{2}}$,即-2x2-5x+5<7-8x-x2,
整理得:x2-3x+2>0,解得:x<1或x>2.
∴不等式($\frac{1}{2}$)${\;}^{2{x}^{2}+5x-5}$>2${\;}^{7-8x-{x}^{2}}$的解集是(-∞,1)∪(2,+∞).
故答案為:(-∞,1)∪(2,+∞).

點(diǎn)評 本題考查指數(shù)不等式的解法,考查了指數(shù)函數(shù)的單調(diào)性,訓(xùn)練了一元二次不等式的解法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)=sin(2x+φ)的圖象向右平移$\frac{π}{12}$個單位后得到的函數(shù)g(x)的圖象,則“函數(shù)g(x)的圖象關(guān)于點(diǎn)($\frac{π}{6}$,0)中心對稱”是“φ=-$\frac{π}{6}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)y=$\frac{\sqrt{{x}^{2}-4}}{lg({x}^{2}+2x-3)}$定義域為(-∞,-1-$\sqrt{5}$)∪(-1-$\sqrt{5}$,-3)∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知f(x)=$\sqrt{x}$,則f(4)=( 。
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若二次函數(shù)y=x2+mx+4的圖象與x軸沒有公共點(diǎn),則實數(shù)m的取值范圍是( 。
A.(-4,4)B.[-4,4]C.(-∞,-4)∪(4,+∞)D.(-∞,-4]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.命題“若p不正確,則q不正確”的等價命題是( 。
A.若q不正確,則p不正確B.若q正確,則p正確
C.若p正確,則q不正確D.若p正確,則q正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=e2x+sin3x,則f′(0)=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.給出下列四個算式及運(yùn)算結(jié)果:
①$\sqrt{\sqrt{\sqrt{x}}}$=x${\;}^{\frac{1}{6}}$;②$\sqrt{x\sqrt{x\sqrt{x}}}$=x${\;}^{\frac{7}{6}}$;③$\frac{x}{\sqrt{{x}^{3}\sqrt{x}}}$=x${\;}^{-\frac{2}{3}}$;④$\frac{{x}^{2}}{\sqrt{x}•\root{3}{{x}^{2}}}$=x${\;}^{\frac{5}{6}}$.
其中正確的有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知?ABCD的面積為2,P是邊AD上任意一點(diǎn),則|PB|2+|PC|2的最小值為4.

查看答案和解析>>

同步練習(xí)冊答案