13.在-6和24之間插人4個(gè)數(shù),使這6個(gè)數(shù)成等差數(shù)列,求插人的4個(gè)數(shù).

分析 根據(jù)已知,求出數(shù)列的公差,進(jìn)而可得答案.

解答 解:在-6和24之間插人4個(gè)數(shù),使這6個(gè)數(shù)成等差數(shù)列,
則a1=-6,a6=24,
則a6-a1=5d=30,
故d=6,
故插入的4個(gè)數(shù)分別為:0,6,12,18

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是等差數(shù)列的性質(zhì),難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.α是第四象限角,則下列數(shù)值中一定是正值的是 ( 。
A.sinαB.cosαC.tanαD.cotα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)函數(shù)f(x)=3sin($\frac{π}{2}$x+$\frac{π}{4}$),若存在這樣的實(shí)數(shù)x1,x2,對(duì)任意的x∈R,都有f(x1)≤f(x)≤f(x2)成立,則|x2-x1|的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知A,B,C,D,E是球面上的五個(gè)點(diǎn),其中A,B,C,D在同一圓周上,若E不在A,B,C,D所在的圓周上,則從這五個(gè)點(diǎn)的任意兩點(diǎn)的連線中取出2條,這兩條直線是異面直線的概率是 ( 。
A.$\frac{1}{5}$B.$\frac{3}{5}$C.$\frac{2}{15}$D.$\frac{4}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在等差數(shù)列{an}中,若a3=2,a6=16,則a2+a7=( 。
A.36B.25C.18D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.(1)已知角α的終邊過(guò)點(diǎn)p(-$\sqrt{3}$,-1),且π<α<$\frac{3}{2}$π,求α的值;
(2)設(shè)α是第四象限角,且cosα=$\frac{5}{13}$,求$\frac{2sin(3π-α)+3cos(-α)}{sin(α+π)+3cos(π-α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.某公司欲將一批新鮮的蔬菜用汽車從A地運(yùn)往相距125公里的B地,運(yùn)費(fèi)為每小時(shí)30元,裝卸費(fèi)為1000元,蔬菜在運(yùn)輸途中的損耗費(fèi)(單位:元)是汽車速度(公里/小時(shí))的2倍,為使運(yùn)輸?shù)目傎M(fèi)用不超過(guò)1200元,汽車的最高速度為每小時(shí)75公里.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知4x2-ax+1可變成(2x-b)2的形式,則ab=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.關(guān)于下列說(shuō)法
①描述算法可以有不同的方式;
②方差和標(biāo)準(zhǔn)差具有相同的單位;
③根據(jù)樣本估計(jì)總體,其誤差與所選擇的樣本容量無(wú)關(guān);
④從總體中可以抽取不同的幾個(gè)樣本;
⑤如果容量相同的兩個(gè)樣本的方差滿足$S_1^2<S_2^2$,那么推得總體也滿足$S_1^2<S_2^2$是錯(cuò)的.
其中正確的有①④.(只填對(duì)應(yīng)的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案